DOI QR코드

DOI QR Code

Hydrogen Absorption Properties of Zr-V-M(M=Fe, Ga, Y) Getter Alloys

Zr-V-M(M=Fe, Ga, Y)게터합금의 수소 흡수특성

  • Park Je-Shin (Minerals and materials processing Division, Materials Development Group Korea Institute of Geoscience, Mining and Materials) ;
  • Suh Chang-Youl (Minerals and materials processing Division, Materials Development Group Korea Institute of Geoscience, Mining and Materials) ;
  • Kim Won-Baek (Minerals and materials processing Division, Materials Development Group Korea Institute of Geoscience, Mining and Materials)
  • 박제신 (한국지질자원연구원 자원활용소재연구부 소재개발연구실) ;
  • 서창열 (한국지질자원연구원 자원활용소재연구부 소재개발연구실) ;
  • 김원백 (한국지질자원연구원 자원활용소재연구부 소재개발연구실)
  • Published : 2005.06.01

Abstract

The $Zr_{57}V_{36}M_7$ getter alloy was prepared by Fe substituting Ga or Y for Fe on $Zr_{57}V_{36}M_7$ getter alloy(St707), and the activation temperatures and the hydrogen a sorption speeds of these alloys were investigated. The activation temperatures of these alloys were estimated from the ultimate pressure-temperature curve and lowered about $100\~200\;K$ compared to $Zr_{57}V_{36}M_7$, fetter alloy(St707). However, final pressures at fully activated temperature were increased with substitution of Fe by Ga and Y on $Zr_{57}V_{36}M_7$ getter alloy. The hydrogen sorption speeds of these alloys measured by an orifice method were decreased about $0.460\~0.586liter/sec$ g compared to $Zr_{57}V_{36}M_7$ getter alloy.

Keywords

References

  1. C. Benvenuti, II European Vacuum Conference, 21 (1990)
  2. P. della Porta, Vacuum, 47(6-8), 771 (1996) https://doi.org/10.1016/0042-207X(96)00064-4
  3. E. Schaschel, Metal Powder Report, 46(12), 30 (1991) https://doi.org/10.1016/0026-0657(91)91661-O
  4. K. Derbyshire, Solid State Technol., 37, 55 (1994) https://doi.org/10.1016/0038-1101(94)90104-X
  5. K. Ichimura, N. Inoue, K. Watanabe and T. Takeuchi, J. Vac. Sci. Technol., A2(3), 1341 (1984) https://doi.org/10.1116/1.572406
  6. C. Benvenuti and P. Chiggiato., J. Vac. Sci. Technol., A14(6), 1341 (1996) https://doi.org/10.1116/1.580226
  7. B. Ferrario, A. Figini and M. Borghil, Vacuum, 35, 13 (1984) https://doi.org/10.1016/0042-207X(85)90070-3
  8. S. P. Garg, E. A. Gulbransen and P. Vijendranl, Vacuum, 40, 275 (1990) https://doi.org/10.1016/0042-207X(90)90043-X
  9. C. Benvenuti, Vacuum, 44(5-7), 511 (1993) https://doi.org/10.1016/0042-207X(93)90084-N
  10. H. F. Dylla, J. Cecchi and M. Ulrickson, J. Vac. Sci. Technol., 18(3), 1111 (1981) https://doi.org/10.1116/1.570850
  11. C. Boffito, B. Ferrario P. Della Porta and L. Rosail, J. Vac. Sci. Technol., 18(3), 1111 (1981) https://doi.org/10.1116/1.570850
  12. R. J. Knize, J. L. Cecchi and H. F. Dylla, J. Vac. Sci. Technol., 20, 1135 (1982) https://doi.org/10.1116/1.571588
  13. K. Ichimura, N. Inoue, K. Watanabe and T. Takeuchil, J. Nuclear Materials, 128, 876 (1984) https://doi.org/10.1016/0022-3115(84)90474-4
  14. M. M. J. Mendelsohn, J. Less-Common Met., 104, 149 (1984) https://doi.org/10.1016/0022-5088(84)90451-X
  15. M. M. Gunter, D. Herein, R. Schumacher, G. Weinberg and R. Schogl, J. Vac. Sci. Technol., A16(6), 3526 (1998) https://doi.org/10.1116/1.580995
  16. J. S. Park, D. J. Lee, D. S. Kil and W. B. Kim, J. the Korean Society for Geosystem Engineering., 41(6), 496 (2004)
  17. D. J. Lee, W. Kim, S. R. In, J. Y. Im and K. B. Kim, J. the Korean Vacuum Society, 14(1), 1 (2005)
  18. S. R. In, M. Y. Park and K. S. Jung, J. the Korean Vacuum Society, 13, 47 (2004)
  19. K. H. Chung, KRISS/IR-2003-097, 99 (2003)
  20. W. B. Kim, D. J. Lee, J. S. Park, C. Y. Suh and J. C. Lee, Korean J. of Materials Research, 15(2), 79 (2005) https://doi.org/10.3740/MRSK.2005.15.2.079
  21. B. Ferrario, Vacuum, 47(4), 363 (1996) https://doi.org/10.1016/0042-207X(95)00252-9
  22. W. V. Lampert, K. D. Rachocki, B. C. Lamartine and T. W. Haas, J. Vac. Sci. Technol., 18(3), 1121 (1981) https://doi.org/10.1116/1.570853