DOI QR코드

DOI QR Code

The Crystallographic Structure and Magnetic Properties of Mg1-xZnxFeAlO4

Mg1-xZnxFeAlO4의 결정학적 구조 및 자기적 성질

  • Published : 2005.06.01

Abstract

The crystal structure and magnetic properties of the $Mg_{1-x}Zn_xFeAlO_4\;(0{\leq}x\leq1.0)$ have been investigated by means of x-ray diffractometry and $M\ddot{o}ssbauer$ spectroscopy. The samples$(0{\leq}x\leq1.0)$ have been prepared by the ceramic sintering method. The x-ray diffraction pattern shows that the crystal structure of the samples is a cubic spinel type. The lattice constant has been found by extrapolation using the Nelson-Riley function and it increases slightly from $8.3496\AA\;to\;8.4128\AA$ with Zn concentration. The $M\ddot{o}ssbauer$ spectra for x<0.4 show a superposition of two sextets ana a paramagnetic doublet at room temperature. The superparamagnetic doublet for x<0.4 seems to be due to Al ion in tetrahedral site by the superparamagnetic clustering effect.

Keywords

References

  1. M. A. Amer, M. A. Ahmed, M. K. EI-Nimer and M. A. Mostafa, Hyperfine Interactions, 96, 91 (1995) https://doi.org/10.1007/BF02066275
  2. C. R. Bluncson, G. K. Thompson and B. J. Evans, Hyperfine Interactions, 90, 353 (1994) https://doi.org/10.1007/BF02069138
  3. J. Neamtu, V. Spinu and G Filoti, J. Magn. Magn. Mater., 133, 481 (1994) https://doi.org/10.1016/0304-8853(94)90601-7
  4. H. Igarashi and K. Okazaki, J. Am. Ceram. Soc., 60, 51 (1977) https://doi.org/10.1111/j.1151-2916.1977.tb16092.x
  5. G J. Baldha and R. G. Kulkarmi, Solid State Commun., 49, 169 (1984) https://doi.org/10.1016/0038-1098(84)90788-9
  6. S. C. Bhargava and P. K. Iyengar, Phys. Stat. Sol(b)., 53, 359 (1972) https://doi.org/10.1002/pssb.2220530138
  7. V. U. Patil and R. G. Kulkarni, Solid State Commun., 31, 551 (1979) https://doi.org/10.1016/0038-1098(79)90251-5
  8. L. R. Maxwell and S. J. Pickart, Phys. Rev., 92, 1120 (1953) https://doi.org/10.1103/PhysRev.92.1120
  9. S. K. Kulshreshtha, J. Mater. Sci. Lett., 5, 638 (1986) https://doi.org/10.1007/BF01731534
  10. S. H. Lee, K. P. Chae, Y. B. Lee and K. S. Oh, Solid State Commun., 74, 1 (1990) https://doi.org/10.1016/0038-1098(90)90197-J
  11. K. G. Efthimiadis, K. G. Melidis and I. A. Tsoukalas, J. Magn. Magn. Mater., 103, 30 (1992) https://doi.org/10.1016/0304-8853(92)90231-C
  12. M. D. Osborne, M. E. Fleet and G. M. Bancroft, J. Solid State Chem., 53, 174 (1984) https://doi.org/10.1016/0022-4596(84)90092-6
  13. M. A. Amer, M. A. Ahmed, M. K. El-Nimir and M. A. Mostafa, Hyperfine Interations, 96, 91 (1995) https://doi.org/10.1007/BF02066275
  14. Ishikawa, J. Appl. Phys., 35, 1054 (1964) https://doi.org/10.1063/1.1713376
  15. M. Petrera, A. Gennaro and N. Burriesci, J. Mater. Sci., 17, 429 (1982) https://doi.org/10.1007/BF00591478
  16. J. K. Srivastava, and K. Muraleedharan, R. Vijayarahavan, Phys. Lett., A104, 482 (1984) https://doi.org/10.1016/0375-9601(84)90028-8
  17. S. H. Lee and W. T. Kim, Solid State Commun., 80, 25 (1991) https://doi.org/10.1016/0038-1098(91)90591-I
  18. M. A. Gilleo, J. Phys. Chem. Solids, 13, 33 (1960) https://doi.org/10.1016/0022-3697(60)90124-4
  19. L. Neel, Ann. Phys. 3, 137 (1948)
  20. Y. Yafet and C. Kittel, Phys. Rev. 87. 290 (1952) https://doi.org/10.1103/PhysRev.87.290