Distribution of Dominant Bifidobacteria in the Intestinal Microflora of Korean Adults and Seniors, Identified by SDS-PAGE of Whole Cell Proteins and 16S rDNA Sequence Analysis

  • KIM TAE WOON (Department of Food Science & Biotechnology and Institute of Life Science & Resources, Kyung Hee University) ;
  • SONG HEE SUNG (Department of Food Science & Biotechnology and Institute of Life Science & Resources, Kyung Hee University) ;
  • KIM HAE YEONG (Department of Food Science & Biotechnology and Institute of Life Science & Resources, Kyung Hee University)
  • Published : 2005.04.01

Abstract

In order to investigate the distribution of dominant Bifidobacterium species in intestinal microflora of Korean adults and seniors, SDS-PAGE profiles of whole cell proteins were used for the identification of bifidobacteria. To confirm the reliability of SDS-PAGE, the Bifidobacterium species identified by SDS-PAGE of whole cell proteins were validated by using 16S rDNA sequencing analysis. The results of SDS­PAGE corresponded well with those determined by the analysis of 16S rDNA sequencing. Based on the analysis of SDS-PAGE patterns on unidentified fecal strains which showed positive in fructose-6-phosphate phosphoketolase activity, B. adolescentis, B. longum, and B. bifidum were identified in the feces of adults, and B. adolescentis, B. longum, B. bifidum, B. breve, and B. dentium were identified in those of seniors. In most of the fecal samples tested, the predominant Bifidobacterium species consisted of only a few species, and differences in the distribution and numbers of Bifidobacterium species were observed between adults and seniors. B. adolescentis and B. longum were found to be the most common species in feces of adults, but not in seniors. Accordingly, the distribution and abundance of bifidobacteria in the human intestinal microflora varied depending on the age of hosts.

Keywords

References

  1. Ausubel, F., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1999. Preparation of genomic DNA from bacteria, pp. 2- 14. In: Short Protocols in Molecular Biology, 4th Ed. John Wiley and Sons, New York, U.S.A
  2. Bevilacqua, L., M. Ovidi, E. Di Matta, L. D. Trovatelli, and E Canganella. 2003. Screening of Bifidobacterium strains isolated from human feces for antagonistic activities against potentially bacterial pathogens. Microbiol. Res. 158: 179-185 https://doi.org/10.1078/0944-5013-00192
  3. Brigidi, P., B. Vitali, E. Swennen, L. Altomare, M. Rossi, and D. Matleuzzi. 2000. Specific detection of Bifidobacterium strains in a pharmaceutical probiotic product and in human feces by polymerase chain reaction. Syst. Appl. Microbiol. 23: 391-399 https://doi.org/10.1016/S0723-2020(00)80070-3
  4. Germond, J. E., O. Mamin, and B. Mollet. 2002. Species specific identification of nine human Bifidobacterium spp. in feces. Syst. Appl. Microbiol. 25: 536- 543 https://doi.org/10.1078/07232020260517670
  5. Gigson, G. R. and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of probiotics. J. Nutr. 125: 1401- 1412
  6. He, F., A. C. Ouwehand, E. Isolauri, M. Hosoda, Y. Benno, and S. Salminen. 2001. Difference in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr. Microbiol. 43: 351- 354 https://doi.org/10.1007/s002840010315
  7. Hebert, E. M., R. R. Raya, and G. S. de Giori. 2000. Usc of SDS-PAGE of cell-wall proteins for rapid differentiation of Lactobacillus delbrueckii subsp. lactis and Lactobacillus helveticus. Biotech. Lett. 22: 1003- 1006 https://doi.org/10.1023/A:1005645422298
  8. Hoover, D. G. 1993. Bifidobactcria: Activity and potential benefits. Food Technol. 6: 120- 124
  9. Jeon, K. S., I. K. Hwang, and G. E. Ji. 2002. Assay of $\beta-glucosidase$ activity of bifidobacteria and the hydrolysis of isoflavone glycosides by Bifidobacterium sp. Int-57 in soymilk fermentation. J. Microbiol. Biotechnol. 12: 8- 13
  10. Johanna, B., G. Rolf, S. Ulrich, W Norbert, D. V. Paul, H. H. Wilhelm, J. K. Hannu, and V. Peter. 2000. Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under moditied-atmosphere conditions. Appl. Environ. Microbiol. 66: 3764- 3772 https://doi.org/10.1128/AEM.66.9.3764-3772.2000
  11. Jorgen, J. L., P. Bruno, C. Henrik, R. Gulam, E. O. John, W. W. Bee, M. Kharidah, and G. Hasanah. 1999. Identification of lactic acid bacteria from chili bo, a Malaysian food ingredient. Appl. Environ. Microbiol. 65: 599- 605
  12. Kim, T. W., S. H. Jung, J. Y. Lee, S. K. Choi, S. H. Park, J. S. Jo, and H. Y. Kim. 2003. Identification oflactic acid bacteria in Kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbiol. Biotechnol. 13: 119- 124
  13. Kunene, N. E, I. Geornaras, A. Holy, and J. W. Hastings. 2000. Characterization and determination of origin of lactic acid bacteria from a sorghum-based fermented weaning food by analysis of soluble proteins and amplified fragment length polymorphism fingerprinting. Appl. Environ. Microbiol. 66: 1084- 1092 https://doi.org/10.1128/AEM.66.3.1084-1092.2000
  14. Malinen, E., J. Matto, M. Salmitie, M. Alander, M. Saarela, and A. Palva, 2002. Analysis of Bijidobacterium populations in human fecal samples from a consumption trial with Bijidohacterium lactis Bb-12 and a galacto-oligosaccharide preparation. System. Appl. Microbiol. 25: 249- 258
  15. Matsuki, T., K. Watanabe, J. Fujimoto, Y. Kado, T Takara, K. Matsumoto, and R. Tanaka. 2004. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal Bifidobacteria. Appl. Environ. Microbiol. 70: 167- 173 https://doi.org/10.1128/AEM.70.1.167-173.2004
  16. Matsuki, T., K. Watanabe, and R. Tanaka. 2003. Genusand species-specific PCR primers for the detection and identification of bifidobacteria. Curr. Issues Intest. Microbiol. 4:61-69
  17. Miyake, T., K. Watanabe, T. Watanabe, and H. Oyaizu. 1998. Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiol. lmmunol. 42: 661- 667 https://doi.org/10.1111/j.1348-0421.1998.tb02337.x
  18. Mullie, C., M. F. Odou, E. Singer. M. B. Romond, and D. Izard. 2003. Multiplex PCR using 16S rRNA gene-targeted primers for the identification of bifidobacteria from human origin. FEMS Microbiol. Lett. 222: 129- 136 https://doi.org/10.1016/S0378-1097(03)00245-3
  19. O' Sulliivan, D. J., P. V. Kirjavainen, C. Shortt, and S. Salminen. 1999. Probiotics: Mechanisms and established effects. Int. Dairy J. 9: 43- 52 https://doi.org/10.1016/S0958-6946(99)00043-6
  20. Ouwehand, A. C., E. Isolauri, V. K. Kirijavainen, and S. J. Salminen. 1999. Adehesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol. Lett. 172: 61- 64 https://doi.org/10.1111/j.1574-6968.1999.tb13450.x
  21. Ryu, B. H., S. H. Cho, S. W. Ha, K. M. Park, and K. H. Kang. 1998. Changes of the intestinal microflora and fecal properties by intake of yoghurt added capsulated or uncapsulated Bifidobacteria. Kor. J. Appl. Microbiol. Biotechnol. 26: 221 - 225
  22. Saavedra, J. M., N. A. Bauman, I. Oung, J. A. Perman, and R. H. Yolken. 1994. Feeding of Bifidobacterium bifidum and Streptococcus thermophllus to infants in hospital for prevention of diarrhea and shedding of rotavirus. Lancet 344: 1046-1049 https://doi.org/10.1016/S0140-6736(94)91708-6
  23. Sakata, S., M. Kitahara, M. Sakamoto, H. Hayashi, M. Fukuyama, and Y. Benno. 2002. Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum. Int. J. Syst. Evol. Microbiol. 52: 1945- 1951 https://doi.org/10.1099/ijs.0.02221-0
  24. Satokari, R. M., E. E. Vaughan, A. D. L. Akkermans, M. Saarela, and W. M. de Vos. 2001. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67: 504-513 https://doi.org/10.1128/AEM.67.2.504-513.2001
  25. Scardovi, V. 1986. Genus Bifidobacterium. In: Bergey's Manual of Systematic Bacteriology, Vol. 2, pp. 1423. Williams & Wilkins, Baltimore, Maryland, U.S.A
  26. Smith, M. L. and J. B. Anderson. 1989. Restriction fragment length polymorphism in mitochondrial DNAs of Armillaria. Mycolog. Res. 93: 247- 256 https://doi.org/10.1016/S0953-7562(89)80151-0
  27. So, J. S., K. Y. Lee, S. Jeakal, T. R. Heo, and S. C. Kim. 2002. Molecular identification of predominant Bifidobacterium strains isolated from Korean feces. J. Microbiol. Biotechnol. 12: 176-18
  28. Venema, K. and A. J. H. Maathuis. 2003. A PCR-based method for identification of bifidobacteria from the human alimentary tract at the species level. FEMS Microbiol. Lett. 224: 143- 149 https://doi.org/10.1016/S0378-1097(03)00436-1
  29. Yaeshima, T., T. Fujisawa, and T. Mituoka. 1991. Differential characteristics of Bifidobacterium longum and Bifidobacterium animalis. Syst. Appl. Microbiol. 14: 169- 172 https://doi.org/10.1016/S0723-2020(11)80297-3
  30. Zavaglia, A. G., G. Kociubinski, P. Perez, and G. D. Antoni. 1998. Isolation and characterization of Bifidobacterium strains for probiotics formulation. J. Food Prot. 61: 865-873 https://doi.org/10.4315/0362-028X-61.7.865
  31. Zoetendal, E. G., A. D. L. Akkermans, and W. M. de Vos. 1998. Temperature gradient gel electrophoresis analysis of 165 rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64: 3854- 3859