Isolation of Sangivamycin from Streptomyces sp. A6497 and its Herbicidal Activity

  • HWANG EUI IL (Bio Research Group, KT&G Central Research Institute) ;
  • YUN BONG SIK (Laboratory of Cellular Function Modulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • CHOI SUNG WON (Research Institute of Biotechnology, Green Biotech Co.) ;
  • KIM JIN SEOG (Biofunction Research Team, Korea Research Institute of Chemical Technology) ;
  • LIM SE JIN (College of Pharmacy, Dongduk Women`s University) ;
  • MOON JAE SUN (Laboratory of Cellular Function Modulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • LEE SANG HAN (Laboratory of Cellular Function Modulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • KIM SUNG UK (Laboratory of Cellular Function Modulator, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2005.04.01

Abstract

During the screening for the inhibitors of cellulose biosynthesis as herbicides, we discovered a Streptomyces sp. A6497 with a selective antifungal activity against cellulose containing Phytophthora parasitica, but not against cellulose lacking Candida albicans. The inhibitor was isolated and identified, using a series of chromatographies. Based on structure analyses with UV spectrophotometry, mass and various NMR, the inhibitor was identified as sangivamycin. The compound exhibited strong antifungal activities against P. parasitica (MIC; 3.125 $\mu$g/ml). In particular, it showed strong herbicidal activities against various weeds in the greenhouse experiment. Taken together, these results suggest that sangivamycin is a useful lead compound for the development of new herbicides.

Keywords

References

  1. Anzai, K., G. Nakamura, and S. Suzuki. 1957. A new antibiotic, tubercidin. J. Antibiot. 10A: 201- 204
  2. Bartnicki-Garcia, S. and M. C. Wang. 1983. Biochemical aspects of morphogenesis in Phytophthora, pp. 121- 137. In D. C. Erwin (ed.), Phytophthora; Its Biology, Taxonomy, Ecology, and Pathogenicity; American Phytopathological Society, Minnesota, U.S.A
  3. Cabib, E., J. A. Shaw, P. C. Mol, B. Bower, and W. J. Choi. 1996. Chitin biosynthesis and morphogenetic process, pp. 243- 267. In R. Bramal and G, A. Marzluf (eds.), The Mycota; Biochemistry and Molecular Biology; Vol. 3, SpringerVerlag, Berlin
  4. Hopp, H. E., P. A. Romero, and R. Pont-Lezica. 1978. On the inhibition of cellulose biosynthesis by coumarin. FEBS Lett. 86: 259- 262 https://doi.org/10.1016/0014-5793(78)80575-4
  5. Koo, S. J., J. C. Neal, and J. M. DiTomaso. 1996. 3,7Dichloroquinolinecarboxylic acid inhibits cell wall biosynthesis in Maize roots. Plant Physiol. 112: 1383- 1389 https://doi.org/10.1104/pp.112.3.1383
  6. Hotchkiss, A. T. Jr. 1989. Cellulose biogenesis and structure, pp. 232- 298. In N. G. Lewis and M. G. Paice (eds.), Plant Cell Wall Polymers: Biogenesis and Biodegradation. ACS Press, Washington, D.C., U.S.A
  7. McGinnis, M. R. and M. G. Rinaldi 1986. Antifungal drugs: Mechanisms of action, drug resistance, susceptibility testing, and assays of activity in biological fluids, pp. 223- 281. ln V. Lorian (ed.), Antibiotics in Laboratory Medicine. Williams & Wilkins, Baltimore
  8. Nishimura, H., K. Katagiri, K. Sato, M. Mayama, and N. Shimaoka. 1956. Toyocamycin, a new anti-Candida antibiotic. J. Antibiot. 9A: 60- 62
  9. Okuda, S. 1992. Herbicides, pp. 224- 236. In S. Omura (ed.) The Search for Bioactive Compounds from Microorganisms. Springer-Verlag, Berlin
  10. Omura, S., Y. Tanaka, K. Hisatome, S. Miura, Y. Takahashi, and A. Nakagawa. 1988. Phthoramycin, a new antibiotic active against a plant pathogen, Phytophthora sp. J. Antibiot. 41: 1910- 1912 https://doi.org/10.7164/antibiotics.41.1910
  11. Omura, S., Y. Tanaka, I. Kanaya, M. Shinose, and Y. Takahashi. 1990. Phthoxazolin, a specific inhibitor of cellulose biosynthesis, produced by a strain of Streptomyces sp. J. Antibiot. 43: 1024- 1036
  12. Osada, H., T. Sonoda, K. Tsunoda, and K. Isono, 1989. A new biological role of sangivamycin: Inhibition of protein kinases. J. Antibiot. 42: 102- 106 https://doi.org/10.7164/antibiotics.42.102
  13. Rao, K. V. 1968. Structure of sangivamycin, J. Med. Chem. 11: 939- 941 https://doi.org/10.1021/jm00311a005
  14. Renau, T. E., L. L. Wotring, J. C. Drach, and L. B. Townsend. 1996. Synthesis of non-nucleoside analogs of toyocamycin, sangivamycin, and thiosangivamycin: Influence of various 7-substituents on antiviral activity. J. Med. Chem. 39: 873-880 https://doi.org/10.1021/jm950444j
  15. Ruiz-Herrera, J. 1992. Fungal Cell Wall: Structure, Synthesis and Assembly, pp. 5- 57. CRC Press, Boca Raton
  16. Suhadolinik, R. J. 1970. Pyrrolopyrirnidine nucleosides, pp. 298- 353. In R. J. Suhadolinik (ed.), Nucleoside Antibiotics. John Wiley & Sons, New York, U.S.A
  17. Suhadolnik, R. J., T. Uematsu, and H. Uematsu, 1967. Toyocarnycin: Phosphorylation and incorporation into RNA and DNA and the biochemical properties of triphosphate. Biochim. Biophys. Acta 149: 41- 49 https://doi.org/10.1016/0005-2787(67)90689-2
  18. Suhadolnik, R. J., T. Uematsu, H. Uematsu, and R. G. Wilson. 1968. The incorporation of sangivamycin 5'-triphosphate into polyribonucleotide by ribonucleic acid polymerase from Micrococcus lysodeikticus. J. Biol. Chem. 243: 2761- 2766
  19. Tanaka, Y., I. Kanaya, Y. Takahashi, M. Shinose, H. Tanaka, and S. Omura. 1993. Phthoxazolin A, a specific inhibitor of cellulose biosynthesis from Microbiol origin: I. Discovery, taxonomy of producing microorganism, fermentation, and biological activity. J. Antibiot. 46: 1208-1213 https://doi.org/10.7164/antibiotics.46.1208
  20. Locci, R. 1989. Streptomycetes and related genera, pp. 2451- 2492. In S. T. Williams, M. E. Sharpe, and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 4. Williams and Wilkins, Baltimore