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Abstract : For a long time, genetic algorithms have been recognized as a new method to solve difficult and complex problems and the
performance of genetic algorithms depends on genetic operators, especially crossover operator. Various problems like the traveling
salesman problem, the transportation problem or the job shop problem, in logistics engineering can be modeled as a sequencing problem.
This paper proposes modified genetic crossover operators to be used at various sequencing problems and uses the traveling salesman
problem to be applied to a real world problem like the delivery problem and the vehicle routing problem as a benchmark problem.
Because the proposed operators use parental information as well as network information, they could show better efficiency in performance

and computation time than conventional operators.
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1. Introduction

Since Genetic Algorithms (GAs) were proposed by John
Holland (Holland, 1992), genetic algorithms have been
proved as a new method for solving difficult and complex
problem for several decades. It is a search algorithm based
on the mechanics of natural selection and natural genetics
(Holland, 1992). In GAs, a solution is expressed by not just
one solution but a population of solutions and then the
solutions mate and bear offsprings for the next generation.
This reproduction and genetic operators are programmed to
replicate the paradigm of survival-of- the-fittest. Over a
lot of generations the solutions in the population are
improved until the best solution in the population comes
close to near optimal.

GAs are consisted of three parts; selection, crossover and
mutation. The role of selection is to choose and remain
better solutions in a population. The role of crossover
operator is to search more precisely near by solution found
and the role of mutation operator is to search more widely
new search space where it did not explore in the previous
generation. So a large number of operators have been
developed to improve the performance of GAs because the
performance of algorithm depends on the ability of these
operators. Especially many researchers have been more

interested in crossover operator than other operators
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because generally a global optimal solution is known as
existing near a sub-optimal solution (Boese, 1995).

A broad class of scheduling problems in logistics can be
viewed as sequencing problems. By optimizing the sequence
of processes or events introduced into a workspace,
optimization across the entire problem domain can be
achieved. However, a sequencing problem like the traveling
salesman problem, the transportation problem or the job
shop problem has been used to prove the validity and
efficiency of a developed algorithm for a long time.
Especially, the traveling salesman problem (TSP) is related
to various real world problems like the delivery problem or
the vehicle routing problem. Therefore, we use TSP as the
test problem for proving the performance of modified
genetic crossover operators.

The TSP is easy to describe: given a finite number of
"cities” along with the cost (or distance) of travel between
each pair of them, find the shortest tour of visiting all the
cities and returning to your starting point. If the cost from
city A to city B is equal to the cost from city B to city A,
the TSP is called a symmetric TSP. If it is not equal, the
TSP is called a asymmetric TSP. In this paper, we deal
with symmetric TSP.

The first papers tried to solve the TSP using genetic
algorithm (GA) were the study of Grefensetette et. al
(Grefenstette et. al, 1985) and Goldberg et. al (Goldberg et.
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al, 1985). Since that, many researchers had made many
efforts for developing new genetic algorithms, especially
crossover operators. Nevertheless, just permutation—based
crossover operatars such as Cycle crossover (CX) (Oliver

et. al, 1989), Order Crossover (OX) (Davis, 1985),
Position-Based  Crossover (PBX) (Syswerda, 1991),
Order-Based Crossover (OBX) (Syswerda, 1991) and

Partial-Mapped Crossover (PMX) (Goldberg et. al, 1985)
were the main stream. But recently researcher’s interest
has been changed more and more in the direction of using
information of parents (Grefenstette et. al, 1985: Whitley et.
al, 1989; Starkweather et. al. 1991). Because the basic
mechanism of GAs is to get better solution through
information propagated for generation to generation, it
seems to be a natural trend. However, the operators using
parental information did not also give enough good
performance. But, we have an intuition that using the
parental information can give a good performance. So, we
introduce new operators.

In this paper, we propose modified genetic crossover
operators, Edge Preservation Crossover (EPX) and Simple
Edge Preservation Crossover (SEPX) focused on improving
the performance of genetic algorithms in both performance
and speed and compare to well known general operators
and edge-based operators. When generating an offspring,
the proposed operators can utilize edge information of
parents to select the best one among the candidates.
Because the proposed operators can propagate the favorable
features existing in the selected parents over a lot of
generations and reproduce offsprings from the information,
they can guarantee that the offsprings are better than their
parents with high frequency.

The rest of the paper is organized as follows. The next
section introduces several genetic crossover operators.
Section 3 gives an outline of the proposed operators and
our algorithm. Section 4 presents the results of the
experiments. The final section contains some concluding
remarks.

2. Genetic Crossover Operator

Five permutation-based crossover operators (PMX, OX,
OBX, PBX, CX), heuristic crossover operator and a variant
of heuristic crossover operatsy and two edge-based
crossover operators (edge recombination crossover (ER)
operator and enhanced edge recombination crossover (EER)
operator), are compared to our new crossover operators.

The Permutation-based crossover operators appear more
often in the literature. The main advantages of those are

that they are very clear and obvious and thus they are
easier to implement than other operators and faster than
These kinds of
can be viewed as variants of

operators using parental information.
crossover operators
conventional crossover operators (one, two or multi—point
crossover). Thus, they use kinds of repairing procedures to
resolve the illegitimacy of offspring involved by
conventional crossover operators in case of TSP.

However, we describe only heuristic crossover operator

and its variant, and two edge-based crossover.

2.1 Heuristic Crossover and its variant

(HX)
It was the first crossover

The heuristic crossover proposed by
Grefensetette et. al (1985).

operator using adjacency information of parents. Since that,

was

several variants had been proposed.

Fig. 1 shows the operation process of heuristic crossover.
The shaded rectangular presents cities randomly selected.
First, heuristic crossover generates offsprings as follows.

Two parents are selected and picks randomly a city (city
6) in two parents. And then choose the shorter edge
between next two right side cities (Ew and Es) and
connect from the current city if it does not make a cycle
{in this problem, city 5 is selected). If the shorter edge
would make a cycle, it chooses a random city among cities
which were not selected at previous steps (in case of city 4
and city 8). This process continues until a tour is
completed.

However, HX only uses right side neighbors among
parental cities. The symmetric TSP, E; and Ej; are totally
the same. Therefore, we think that there is no reason to
check only right side edges of parents. So we will expand
it checking both side edges.
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Fig. 1 Heuristic Crossover

One of the variants of heuristic crossover is greedy
crossover (GX) (Yang, 1997). The difference between HX
and GX is that in GX, offspringl is generated by the right
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side edges of parents and offspring 2 is generated by the
left side edges of parents.

2.2 Edge Recombination Crossover and its variant

The edge recombination crossover (ER) was proposed by
Whitley et. al (1989) for solving TSP. It utilizes only
adjacent information of nodes in parents instead of distance
information of parental edges. It first makes an adjacent
table of each node in parents and uses the table for
generating offsprings. Fig. 2 shows the edge recombination
crossover. First, it chooses randomly a city (city 3) and
among the elements that have a link with current city,
chooses the element which has the fewest number of links
remaining in its adjacent table entry (in this problem, city 4
has four elements and city 5 has 2 element. So city 5 is
selected). If elements have the same number of links (in
case of city 6), choose randomly one (city 9) among them
(city 7 and city 9). This process continues until it generates
a complete tour.

The modified version of ER is enhanced edge
recombination crossover (EER) proposed by Starkweather
et al (Starkweather et. al. 1991). The difference between the
original version and the variant is that the variant
preserves the common edges of parents.

The EER has a new adjacent table that is the same as
the old adjacent table, except for the tagged information of
some common edges between the parents. That is, common
edge between parents puts a tag and gives the tagged edge
to a priority at competition.

They showed that ER and EER using adjacency
information of parents are to get better solution than that of
other conventional crossover operators (Whitley et. al, 1989;
Starkweather et. al. 1991). After EER, more variants had
been introduced in the literature for enhancing the original
version (Mathias and Whitley, 1992; Nguyen et. el, 2000).
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Fig. 2 Edge Recombination Crossover
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3. EPX Operator

New crossover operators were developed by studying HX
(Grefenstette et. al, 1985) and EER (Starkweather et. al
1991). The former is focused on the distance of edges,
whereas the latter gives the priority at common edge. We
can not assert what more important information between
distance of edges and common edge of parents is. So we
have developed two crossover operators; one is an operator
considering only distance of edges, the other is an operator
considering distance of edges but giving priority at common
edge of parents. But both the two operators are different
from the previous two operators. The proposed crossover
operator can utilize much more parental information.

First, the simple edge preservation crossover (SEPX) is
focused on distance of edges. But the difference with HX is
that HX checks only right side edges of current city, on the
contrary SEPX checks not only the right side but also left
side edges of current city. As mentioned in the previous
section, there is no reason to check only right side edges
because edge {a, b) and edge (b, a) present the same
information in case of symmetric TSP.

R "y s
L2 aresenss ; Common Edge K 4
Offspring 1

Fig. 3 An example of EPX

Next one is the edge preservation crossover (EPX). EPX
combines the idea on distance of edges and on giving
priority at common edge. We assume that common edges
may include more important information augmented for
evolutionary process. Fig. 3 shows an example of EPX and
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the procedure is as follows. In here, we explain the
procedure focusing on offspring 1.

One arbitrary city (city 19) is chosen and four edges
(19, 20), (19, 18), (19, 18), (19, 3)) of current city in parents
are checked. If a common edge exists, the common edge is
selected as next city ((19, 18) is the common edge).
Otherwise, compare with distances of each edge and the
shortest edge are selected. If the shortest one is already
selected at the previous step, the next shorter edge is
considered. If all edges were introduced at a previous
process, a city which is not selected at the previous steps
is selected randomly.

The advantage of SEPX and EPX
offsprings as many as we want. That is, if we select

is to generate

different starting points, it can generate different offsprings.
Fig. 3
offsprings generated by EPX. In this paper, number of

shows two parents selected for crossover and

offspring (Nogspring) 1s fixed as 2 for fair comparison with
other crossover operators.

4. Experimental Results

In this paper, we perform two comparative experiments.
One compares several crossover operators and the other
analyzes the stability of EPX and SEPX. In the first
experiment, for comparison with each crossover operator,
we use a simple GA, which does not include the local
search method. But in the second experiment, we use a
local search method as well as the proposed crossover
operators. The used local search method is 2-opt algorithm.
This algorithm deletes two edges, thus breaking the tour
into two paths, and then reconnects those paths in a
possible way.

First, we describe the framework of the GA in the
experiment. Initial individuals are randomly generated and
used binary tournament strategy for the selection. The
elitist selection strategy is also applied. That is, if the best
tour in the new generation is worse than the previous one,
we preserve the previous best tour by passing it to the
new generation. The number of preserved best tour is 3.
The mutation operator used in this experiment is the
inversion mutation operator. It first selects arbitrarily two
positions in a chromosome and then inverts the substring
between these positions.

The population size (pop_size), the crossover probability
(P.) and mutation probability (P,) are 200, 0.6 and 04
respectively. The termination condition is that if the best
tour so far has not been improved for more than N
generations, the whole algorithm is stoped. In here, N is

currently set to 1,000. We carry out 30runs on each
operator by changing the seed of the random number.

All algorithms are implemented by using Visual C++ on
PentiumllIl 450Mhz. For comparing with operators, the four
test instances (eil5l1, eil76, kroA100 and pr124) are used and
for confirming the abilities to find the best known solution,
another four test instances (linl05, prl07, prl24 and
kroA150) are used. They are all from the TSPLIB [14]. In
the quality
average) is defined as follows, i.e. the quality indicates the

all experiment, (minimum, maximum and
percentage over the optimal value.

Fitness— Optimal
Optimal x100(%) @O

quality=

Table 1 shows the result of first experiment. EPX and
SEPX found better solution than other crossover operators
at most of the cases. In the case of eildl instance, the
proposed crossover operators found the optimal solution, but
the other crossover operators did not find optimal solution.
In the other instances, the proposed operators did not find
optimal solution but found near optimal solution. The
solution quality did not exceed 3.9% (EPX) and 2.5%
(SEPX) respectively at pr124. EPX and SEPX required a
little more computation time than permutation-based
operators. On the other hand, they spent much less
computation time than operators (ER and EER) using
adjacency information of parents.

In the comparison between EPX and SEPX, SEPX
showed better results than EPX but needed more
computation time and more generation. We could confirm
that
permutation -based crossover operators and edge-based

the proposed crossover operators are superior to

crossover operators.

o L SEPXFPX HX GX
0 250 500 750 1000 1250 1500
oumesation

Fig. 4 The results of pr124 problem

Fig. 4 shows the results at prl24 instance. In this figure,
it Is an interesting fact that operators using adjacent
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Table 1 The comparison of crossover operators

eil51 (426) eil76 (538)
Min Avg. Max %\r/ﬁe (Cs:ePéJ) Avg. gen Min Avg. Max %\ﬁe ((s:epg) Avg. gen
PMX 434 448.8 463 11.6 1614.2 568 582.8 605 18.0 1521.7
OX 431 444.6 457 16.3 1916.1 545 560.6 579 26.2 2014.9
0OBX 431 445.3 463 17.9 1848.9 556 572.5 589 41.3 2420.8
PBX 431 446.8 468 24.4 1888.9 556 575.3 596 56.3 2435.8
CX 435 448.7 463 8.8 1540.5 552 583.5 608 13.9 1638.1
ER 435 445.9 462 35.8 1762.9 561 578.2 609 73.7 2048.8
EER 435 447.5 465 28.8 1448.8 561 580.8 604 61.7 1734.7
HX 427 438.9 450 25.2 1577.2 552 566 586 52.1 1895.6
GX 435 447 467 19.6 1308.6 551 580.5 599 37.3 1434.8
EPX 426 435.4 450 17.4 1080.4 544 561.8 577 36.1 1235.9
SEPX 426 434.2 450 28.6 1365.8 541 552.5 563 48.7 1553.6
kroA100 (21282) pr124 (59030)
Min Avg. Max 'ﬁ\;r?e ((s::g) Avg. gen Min Avg. Max 'ﬁ\;r?e (gePCU) Avg. gen
PMX 22165 23159 24782 29.9 1771.4 60362 62654.9 66679 48.6 2230.8
OX 21389 22712 24045 42.6 2071.6 59777 62048.7 64401 63.2 2300.1
0BX 21876 22911 24341 67.3 2581.5 59576 61260.7 65125 80.6 2869.0
PBX 21543 23280 24503 90.2 2545 .4 60163 62245 65693 137 2780.9
CX 21959 23003.8 24854 21.4 1943.5 59652 62061.3 64837 29.6 2389.6
ER 21579 22882 24383 102.3 1849.2 60049 62265.5 70275 163.2 2102.4
EER 21941 23031.3 24185 92.3 1672.6 59903 62104.5 66618 155.7 2023.6
HX 21644 22504 23848 70.7 1704.5 59413 61147.8 63700 116.5 2007.7
GX 22261 23029.1 24255 62.9 1615.9 60560 62362.2 67275 104.4 1910.9
EPX 21556 22263.9 24009 59.7 1392.8 59087 61359.5 63906 90.6 1521.1
SEPX 21383 21894.4 22798 75.3 1530.8 59323 60561.5 63297 104.3 1538.7

information present more early convergence and find better
solution. It shows a possibility to find much better solution
in much less computation time if the proposed operators are
combined with a local search method.

Next experiment is the stability analysis of EPX and
SEPX operator. In this experiment, we analyze the stability
of the proposed crossover operators because it is another
important measure.

As mentioned above, 2-opt is used for an extensive local
search. Although it needs an amount of computation time,
it can find better solution.

The results of EPX and SEPX at 1inl05, pr107, pr124 and
kroA150 instances are shown in Table 2. CPU Time shows
the average CPU Time until satisfying the termination
condition. In here, EPX and SEPX found a known optimal
solution in all test cases and obtained average quality of
nearly 0 %. In all of the cases, SEPX generated better
quality than EPX and required much less computation time
because SEPX found the optimal solution
generation. Although we can not assert that the distance of

in a few

edges is much important information than common edges of
parents, apparently it seems to be that using the former can
give a slightly better results that using the latter.

() : the optimum solution.

5. Congclusion

In this paper, we have experimented new crossover
operators, simple edge preservation crossover (SEPX) and
edge preservation crossover (EPX) for sequencing problems.

By means of various experiments, it has been confirmed
that SEPX and EPX can get better results than
permutation-based crossovers and operators using parental
information. Although the proposed new crossover operators
needed more computation time than that of permutation-
based crossovers, the performance is much superior to
them. And we could confirm that using parental information
can be a technique for finding good solutions. The stability
analysis of EPX and SEPX showed that SEPX is better
than EPX in all aspects of experimental. But we can not
prematurely convince that distance information between
cities is more important than common edge information.
And the proposed crossover operators also can be applied to
other sequencing problems if a fitness function can be
properly changed based on the global information for a
given problem instead of the distance for the traveling
salesman problem.

There is an interesting direction for a future work. Both
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Table 2 The stability analysis of EPX & SEPX

Quality (%)
lin105 pr107(44303)
. Avg. CPU . Avg. CPU Avg.
Min Avg. Max Time(seo) Best Avg. gen Min Avg. Max Time(sec) Best gen
EPX 0.0 0.0 0.0 30.8 30/30 109.8 0.0 | 0.057 | 0.305 145.4 24/30 | 515.5
SEPX 0.0 0.0 0.0 25.7 30/30 87.2 0.0 | 0.049 | 0.404 110.7 25/30 | 380.8
pr124(59030) kroA150(26524)
. Avg. CPU . Avg. CPU Avg.
Min Avg. Max Time(sec) Best Avg. gen Min Avg. Max Time (sec) Best gen
EPX 0.0 0.008 | 0.078 481 27/30 126.9 0.0 0.55 1.78 9581 1/30 1688
SEPX 0.0 0.005 | 0.078 37.0 28/30 94.9 0.0 0.56 2.0 871.9 3/30 1499

of the proposed operators take more computation time than
the others. So, we will investigate how to reduce the
computation time. And the proposed operators may not
preserve a common sub—tour in a complete tour of two
parents. So it can lose important information of parents.
This problems will be investigated to further improve the
proposed operators.

Reference

[1] Boese, KD.(1995), "Cost Versus Distance In the
Traveling Salesman Problem”, Technical Report
CSD-950018, UCLA Computer Science Department.

[2] Davis, L.(1985) ”Applying Adaptive Algorithms to
Domains” Proc. of the International Joint Conference on
Artificial Intelligence, pp. 162~164.

[3] Goldberg, D. and Lingle, R.(1985) "Alleles, Loci and the
Traveling Salesman Problem”, Proceedings of the First
International Conference on Genetic Algorithms and
Their Applications, pp. 154~159.

[4] Goldberg, D.(1989) Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison Wesley.

[5] Grefenstette, J. Gopal, R. Rosmaita, B. and Gucht,
D.(1985) “Genetic  Algorithms the Traveling
Salesman Problem”, Proceedings of the First
International Conference on Genetic Algorithms and
Their Applications, pp.160~168.

[6] Holland, J.H.(1992), Adaptation in Natural and Artificial
Systems, The MIT Press.

[7] Mathias, K. and Whitley, D.(1992) "Genetic Operators,
the Fitness Landscape and the Traveling Salesman
Problem”, Parallel Problem Solving from Nature 2,
pp.219~228, North Holland-Elsevier.

for

() : the optimum solution.

[8] Nguyen, H. D. Yoshihara, I. and Yasunaga, M.(2000)
"Modified Edge Recombination Operators of Genetic
Algorithms for the Traveling Salesman Problem”,
Industrial Electronics Society, IECON 2000. 20 th
Annual Conference of the IEEE, Vol. 4, pp. 2815~2820.

[9] Oliver, I. Smith, D. and Holland, J.(1989) "A Study of

Permutation Crossover Operators on the Traveling

Salesman Problem”, Proc. of the Second International

Conference on Genetic Algorithms, pp. 224~230, July.

Starkweather, T. McDaniel, S. Mathias, K. Whitley, D.

and Whitley, C.(1991) "A Comparison of Genetic

Sequencing Operators”, Proceedings of the Fourth

International Conference on Genetic Algorithms,

Morgan Kaufmann Publishers, San Mateo, CA.

Syswerda, G.(1991) "Schedule Optimization Using

Genetic Algorithms”, In L. Davis, ed., Handbook of

Genetic Algorithms, pp. 332~349.

TSPLIB. Web Site, http://www.iwr.uni—heidelberg.de

/iwr/comopt/soft/TSPLIB9S/TSPLIB . html.

Whitley, D. Starkweather T. and Fuquay, D.(1989)

"Scheduling Problems and Traveling Salesman: the

Genetic Edge Recombination and Operator”, Proc.

Third Int. Conf. Genetic Algorithms and their

Applications, pp.133~140.

Yang, R.(1997) "Solving Large Traveling Salesman

Problems with Small Populations” Genetic Algorithms

in Engineering Systems: Innovations and Applications,

pp.157 ~162.

(10]

[11]

[12]

[13]

[14]

Received 27 January 2005
Accepted 11 March 2005

- 146 -



