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SOME COMPANIONS OF OSTROWSKI’S
INEQUALITY FOR ABSOLUTELY CONTINUOUS
FUNCTIONS AND APPLICATIONS ‘

S. S. DRAGOMIR

ABSTRACT. Companions of Ostrowski’s integral inequality for ab-
solutely continuous functions and applications for composite quad-
rature rules and for p.d.f.’s are provided.

1. Introduction

In [1], Guessab and Schmeisser have proved among others, the fol-
lowing companion of Ostrowski’s inequality.

THEOREM 1. Let f : [a,b] — R be such that
(1.1) 1f (t) = f(s)| < M|t —s|F, for any t,s € |a,b]

with k € (0,1], i.e., f € Lipy, (k). Then, for each x € [a, b1 | we have
the inequality

X a — X b
12 |L@+S@td )_bia/ f(t)dt‘

2

k+1 (. _ yk+1 _ k+1
< 26tz —a)"" + (a+b—2x) M
- 2k (k+1)(b—a)
This inequality is sharp for each admissible x. Equality is obtained if
and only if f =+ M f, + c with ¢ € R and
(x—t)k for a<t<u;

(1.3) fu@®) =4 (t— )" for z<t<1i(a+b);

' fel@+b—1t) for L(a+b)<t<b
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We remark that for k =1, i.e., f € Lip,,, since

|8 b—a

2 2 _ 3atb)\ 2
4(:c—a)4(%l—)(—cz$b—2x) _ ;+2(a: I) (b—a),

then we have the inequality

z a - T b
(14) [[@)Eflatb=o) 1 /f(t)dt’

2 b—a

for any x € [a, aTer] .

The constant % is best possible in (1.4) in the sense that it cannot be
replaced by a smaller constant.
We must also observe that the best inequality in (1.4) is obtained for

T = ‘”fb, giving the trapezoid type inequality
3a+b a+3b b
== == 1 1
R A );rf( i )—b /f(t)dt <gb-am

The constant 3 is sharp in (1.5) in the sense mentioned above.

For a recent monograph devoted to Ostrowski type inequalities,
see [2].

In this paper we improve the above results and also provide other
bounds for absolutely continuous functions whose derivatives belong to
the Lebesgue spaces Ly [a,b], 1 < p < co. Some natural applications are
also provided.

2. Some integral inequalities

The following identity holds.

LEMMA 1. Assume that f : [a,b] — R is an absolutely continuous
function on [a,b]. Then we have the equality
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b
@Y U@+ arb-o)- 2 [ foa

- bia/ax(t—a)f’(t)dt—i—bia/:%_w (t—a;b)f’(t)dt

: b
+bia/a (t—b) £ (t)dt,

+b—x

for any x € [a, “T'H’] .

Proof. Using the integration by parts formula for Lebesgue integrals,
we have

/m(t—a)f’(t)dtzf(w)(ar—a)—/xf(t)dt,

/Hb_m (t - a;rb> £ (t) dt

=f(a+b-12) (aTer—m) — f(2) <m—a;b> —/:+b_wf(t)dta |

and

b

b
/ (t—b)f’(t)dtz(m—a)f(a+b—x)—/ £(t)dt.

+b—zx a+b—zx
Summing the above equalities, we deduce the desired identity (2.1). O

REMARK 1. The identity (2.1) was obtained in [1, Lemma 3.2] for
the case of piecewise continuously differentiable functions on [a,b] .

The following result holds.

THEOREM 2. Let f : [a,b] — R be an absolutely continuous function
on [a,b]. Then we have the inequality

b
(2.2) \%[f<x>+f<a+b—x>]—g—f—a/f(t)dt]

<5 | [ e-alr ol

a+b—x b b
+/ t—a; ‘]f’(t)|dt+/
= M),

b—1t)|f (t)] dt]

b—z
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for any ¢ € [a, “T‘H’] .
If f' € L [a,b], then we have the inequalities

(2.3) ‘
1 —a)?, ., +b S
M(.’I}) < b—a [(J; 20‘) ”f H[a,x],oo + (a 9 - CII) “f ||[z,a+b—a:],oo

(z —a)

+

2
||f'n[a+,,_x,,,],w]

( 1 ¢ — datb 2
*8—+2<‘—b:—a4‘*) (6= a) [1f'lljg,5],00

1
1 [z-a\* x — b e
20‘—1 (b—a) 1

[Ilf’ll[” oo T 118 i apoo 1 W] * (0= )

. T 1 _ 1.
if a>1, 5+3'1’
1 r—a\? 3:—“7“’ 2
Y2 \b—a) '\ Tb-a
< (1 a0 + 1 ipaso-sto0 + 17 lfubospoo] (= 0);

for any z € [a, aT'H’] .
The inequality (2.2), the first inequality in (2.3) and the constant
are sharp.

Proof. The inequality (2.2) follows by Lemma 1 on taking the mod-
ulus and using its properties.
If f' € Ly [a,b], then

[ e-alrolas E ).

a+b
Sl ) 1 e

t—

a+b
2

/xa+b—z POl < (

b ’ (
JCEIHOLE
a+b—2x
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and the first inequality in (2.3) is proved.

Denote
a+b 2
I [a,x],00 + < 9 - l’) ”f/H[m,a—i-b—w],oo
(x—a

T 1] [a+b—2,b],00 °

for z € [a, 4£2] .
Firstly, observe that

M(CL‘) < max{”fl”[a,x],oo ’ Hf/H[a:,a—}-b—:c],oo ’ ”f/H[a-l—b—x,b],oo}
(z —a)? a+b 2 (z—a)?
8 { 3 T < 2 —x> L

1 3a+b\?
= ||f/||[a,b],00 lrg(b—a)z—i—Q(w_ a4 ):l

and the first inequality in (2.3) is proved.
Using Holder’s inequality for a > 1, % + % =1, we also have

—a)?]” a 2 x—azaé
M(m)ﬁ{[(x2)} +(2-252) +[( Z)H

X 110+ 1 scyoo + 1 s 0]

giving the second inequality in (2.3).
Finally, we also observe that

~ (z — a)? a+b\°
M(x)Smax{$2 ,(w— 7 )}
% (11 Nazyoo + 11 lissoson + 1 wspapoo) -

The sharpness of the inequalities mentioned follows from Theorem 1 for
k = 1. We omit the details. O

M) =&

Wi

REMARK 2. If in Theorem 2 we choose = = a, then we get

_+_ /
f()2f b—a/f t)dt| < - _a)||f||[a,b],oo

(2.4)

with 1 as a sharp constant (see for example [2, p-25]).
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If in the same theorem we now choose x = %b, then we get

(2.5) ‘f (a+b> ia/llbf(t)dt’

3 ~(b —a) [”f'”[a,a;_b],oo + ”fI”[%*”b]’oo]
1 '
Z (b - a) ”f H[a,b],oo

| /\

IN

with the constants } and ; being sharp. This result was obtained in [3].
It is natural to consider the following corollary.

COROLLARY 1. With the assumptions in Theorem 2, one has the
inequality:

3a+b a3b
(2.6) f(‘f);f“ /f t)dt| <

1

b= a) || £]] o 1,00

o |

The constant 81' is best possible in the sense that it cannot be replaced
by a smaller constant.

The case when f' € Lya,b], p > 1 is embodied in the following
theorem.

THEOREM 3. Let f : [a,b] — R be an absolutely continuous function
on |a,b) so that f' € L,[a,b], p > 1. If M (z) is as defined in (2.2), then

we have the bounds:
r—a 1+
(5=2) 1o

1
. atb . 1+5
+24 ( — > 15 g a2,

r—a 1+% 1
S e I T P CRL

1
1
(g+1)«

27 M) <




Ostrowski’s inequality 219

¢ 141 1 atb_ 1+%
2(=) " 2 (55

X max {”f/”[a,a:],p ’ Hf/”[x,a—i—b—:z:],p ’ “f/H[a—}-b—:z:,b],p} (b - a) )

1
+a o atb at+l]a
o)t (32)]

1
S LA A ]"
if a>1

=

Q]b—l

b
1
_+___

7

(
1

1
x—a H—% 1 ﬂz'_b'z 1+3
max (—b_a) 20 | 3

5 (1 Masto + 1 Nty + 1 N io] = @)

’

for any x € [a, ‘H‘b]

Proof. Using Holder’s integral inequality for p > 1, % +

have
/:(t—a)|f’(t)\dt§ (/a (t—ath> “f||[am

(¢ — a)H%
—m “ ||[a,ac],p’

1 _
a—l,We

a+b

/a+b—x
T

( a+b x
2

(a+b :z:)H_

1ol

a+b

q
22 ) 1 s

IA

(q 1)5 ||f,||[x,a+b—a:],p’
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and
b b _
[ emalrolas ([ 0-0ma) 1
(z—a)t7 .,
el

Summing the above inedualities, we deduce the first bound in (2.7).

The last part may be proved in a similar fashion to the one in
Theorem 2, and we omit the details. O

REMARK 3. If in (2.7) we choose a = ¢, 8 = p,
then we get the inequality

+t:=1p>1,

(2.8)
M (z)

1
1 q+1|
24 z—a\M b g 1
- (g+1)s Rba) +< b—a (b=a)e || £l0p15-

for any z € [a, “T"‘b] .

REMARK 4. If in Theorem 3 we choose z = a, then we get the trape-
zoid inequality

a b
0y |1 );f(b)_bia/a f(t)dt‘s

1
1 (0=a)e [1f e
2 "
(g+1)a

The constant % is best possible in the sense that it cannot be replaced
by a smaller constant (see for example [2, p.42]).

Indeed, if we assume that (2.9) holds with a constant C' > 0, instead

1
of 3

fla)+ f(

(b—a)7 |1 f'llja
2 ?

(2.10) !
(q+1)s

b) 1 [
—b_a/a f(t)dt‘sa
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then for the function f : [a,b] = R, f(x —k|:v—“—+b k > 0, we have
UCESIUNRLET
2 b
ERyp—
||f||[a,b],p: _“)”;

and by (2.10) we deduce

1k(b—a)_k(b—a) C-k(b—a)
2 4 (g+1)7
1
giving C > Q—i%)i. Letting ¢ — 14, we deduce C' > %, and the sharpness
of the constant is proved.
REMARK 5. If in Theorem 3 we choose x = “T*'b, then we get the
midpoint inequality
_ 1 b
(2.11) ‘f (G—M) - —/ f(@) dtl
" 1 (b-
<o —Y———~< a a
<3 R L 17 Mg+ 15 g )
1 (- a)q 1 1
<35 [ g P> 1 S+ =1
(g+ 1) P

In both inequalities the constant i 5 is sharp in the sense that it cannot
be replaced by a smaller constant.
To show this fact, assume that (2.11) holds with C, D > 0, i.e.,

(2.12) ’f (a+b> / F(t dt{

(b—a)% ' !

<C- m [”f ||[a,°‘T+”],p+ 7 H[ﬂz'—b’b]m]
b—a)e |,

<p L=y

(g+1)e
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For the function f : [a,b] = R, f(x) =k |33 “+b| , k > 0, we have

f(“;“b>—0 ———/ft)dt k(b4 23

: , b—a\? .1 L
|‘f(‘[a,ﬂzﬁ],p+||f||[aT+b,b]’p=2( 2a> k=24(b—a)rk,

, 1
1 a5 = (0 = @7 s
and then by (2.12) we deduce
k(b—a) <C. k(b—al) <D. k(b—al),
! (g+D7  (g+1)

1
giving C, D > (Q_+421 for any g > 1. Letting ¢ — 1+, we deduce C, D > %
and the sharpness of the constants in (2.11) are proved.
The following result is useful in providing the best quadrature rule
in the class for approximating the integral of an absolutely continuous
function whose derivative is in Ly, [a, b] .

COROLLARY 2. Assume that f : [a,b] — R is an absolutely continu-
ous function so that f' € Ly[a,b], p > 1. Then one has the inequality -

J ( 4 ) J ( ) )

(
(g+1)

1
! .

=Y ~N

where 1 + =

The constant 1 is the best possible in the sense that it cannot be
replaced by a smaller constant.

Proof. The inequality follows by Theorem 3 and Remark 3 on choos-
: _ 3a+b
mg xr = -4

To prove the sharpness of the constant, assume that (2.13) holds with
a constant E > 0, i.e.,

3a+b a+3b
G );f( _a/f ) dt

(2.14)

~~
o
=]
o
Q=] Qe

1 ”f,”[a,b],p :
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Consider the function f : [a,b] — R,

m_3a-+—b
4

1 if z€ [a, %],

flz)=

Im—a+3b} if ze€ (%b,b].

Then f is absolutely continuous and f’ € Ly [a,b], p > 1. We also have
1 3a+b a+ 3b 1 b b—a
317 (35 )+f( )] =0 i [rma=222

1 |y = B — )7 .

and then, by (2.14), we obtain:

b—a <E (b— a)1
8 (g+ 1)«
1
giving £ > (qisl)—q for any ¢ > 1, ie,, E > %, and the corollary is
proved. ' O

If one is interested in obtaining bounds in terms of the 1—norm for
the derivative, then the following result may be useful.

THEOREM 4. Assume that the function f : [a,b] — R is absolutely
continuous on [a,b]. If M (z) is as in equation (2.2), then we have the
bounds

(2.15) M (z) < (%) ||f/||[a,z],1

atb o , zT—a
() W eerrmas * (22) W
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17l ,81,1

_ ‘ ) o
(z=a)", (s
b—a b—a

‘ 1
S [T T AP T

if a>1,
b—3
Tt 5
\ b—a

The proof is as in Theorem 2 and we omit it.

QI

1 _
+3=1,

mast 1 oy 18 s+ 1 ] -

REMARK 6. By the use of Theorem 3, for x = a, we get the trapezoid
inequality (see for example [2, p.55])

(2.16) !f(a);f /f t)dt‘ %Hf,“[a,b],l

If in (2.15) we also choose z = %£®

(see for example [2, p.56])

(2.17) lf(a+b)——/f dti %“f”ab

The following corollary also holds.

, then we get the mid point inequality

COROLLARY 3. With the assumption in Theorem 3, one has the in-
equality:

218) ‘f(%ﬂﬂf(%@)_ 1 /bf( "

1
2 b—a SZ“f“[ab]l
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3. A composite quadrature formula

We use the following inequalities obtained in the previous section:

3a+b a+3b
A7 (50 _bia/bf(t)dt

(3.1) .

(1 _
g0 layeo 1 /'€ Leo [a,B];
)1 G-
—alg .
g{ L NNy i £ € Lplad], p>1, 241 =1;
1 (g +1)s
1 ! : /
\ 7 1 e if '€ Lyla,b].
Iet I, : a = 29 < 21 < -+ < Tp_1 < z, = b be a division of
the interval [a,b] and h; := 241 —2; (1=0,...,n—1) and v (I,) :=

max{h;|¢ =0,...,n—1}.
Consider the composite quadrature rule

n—1 . . ; i
52 Quinp =13 [f (%ﬂ_ﬂ_z_wﬂ_) y (w_%ﬁﬂ b

=0
The following result holds.

THEOREM 5. Let f : [a,b] — R be an absolutely continuous function
on [a,b]. Then we have

b
(3.3) / £ () dt = Qn (L, £) + R (I, ),

where Qy, (I, f) is defined by formula (3.2), and the remainder satisfies
the estimates

(3.4)
(1, o g
Q “f “[a,b],oo Z h’i if f € Loo [aa b]a
8 i=0
1
n—1 q
BT <8 — 2 s (5 B5)° i f e Lylab,
A=
p>1, %+ % =1;
1
| 2 1 0% (o)
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Proof. Applying inequality (3.1) on the intervals [z;, z;11], we may

state that

(3.5)

i

IA

for each i € {0,..

/:Mf(t) dt—é

[f (3xi-|;1$i+1> +f<$i+jxi+l>] by
1.9

ghz ||fl||[xi,xi+1],0° ;

Lt p>11+l=1,
4(q+1)% { [ zit1lp? 'p g !

1
Zhi ”f,”[:z:i,zwﬂyl ;

Summing the inequality (3.5) over ¢ from 0 to n — 1 and using the
generalized triangle inequality, we get

(3.6)

(

|Rn (In, f)] < S

\

n—1 9 ,
Z%) hz “f “[zi,zi+1],00;

oo

O —— E . o . p 1 1
4(q+ 1)% =0 ' [iziv1]p p T2

1 n—-1 ,
Z Z=Z:Q hi “f Il[:{;i,xi+1],1 :

Now, we observe that

n—1 n—1
Z h12 ||f,”[a:i,:zi+1],oo pS ||fI||[a,b],oo Z h?
=0 . =0



Ostrowski’s inequality 227

M

Using Hélder’s discrete inequality, we may write that
n—1 1+ ) n
Z i ”f [wzyzz-{—l P S

> >l )A(E:ufnmwwl )
() (B vor)

1

n—1 q
_ +1 !
- (25) Wl

Also, we note that
max {h; }Z H f [

S
Il
,...o

3

n—1
Zhi Hfll [zs,Ti+1], 1 0<i<n—1

i=0 =0

= v (In) [ | 0.0

Consequently, by the use of (3.6), we deduce the desired result (3.4). O

[@5,@i41],

For the particular case where the division I,, is equidistant, i.e.,

I,:x;=a+1-

we may consider the quadrature rule:

67 Qn(h=" ; {rlor (%51 0-0)

e (522) o)

The following corollary will be more useful in practice.

COROLLARY 4. With the assumption of Theorem 5, we have

b
(3.8) / F(#)dt = Qn (F)+ R (),
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where Qp, (f) is defined by (3.7) and the remainder R, (f) satisfies the

estimate:

(1 (b—a)2'
L

/ (b— a)1+-‘13
(39) |Rn. (Ina.f)‘ < 4 - 1 Hf ” [a,b],p ° —__—;
4@+U

1 (b—a)
1 1 W a 1 - e

4. Applications for P.D.F.’s

Summarizing some of the results in Section 2, we may state that for
f :la,b] — R an absolutely continuous function, we have the inequality

an [uw+saro-a-1 [roa

(

8

' 1
7 g+17 ¢
2‘1 Tr—a q+1 a+b___x .
T ( _;_1)l <b—a> +< 2_.(1 (b—a)qu'H[a’b],p,
q a

+%:1, and ¢’ € L, [a,b];
| 4

for all x € [a, “T‘H’] .

Now, let X be a random variable taking values in the finite interval
[a,b], with the probability density function f : [a,b] — [ 00) and with
the cumulative distribution function F(z) =Pr(X <z) = [” f(t

The following result holds.

1 x — Satb 2
_+2<b—2 (6= a) 119'lla,5),00 if ¢ € Loo [a,b];

IA

T — 3a+b

4 /
‘—t;‘}MMwm’

b
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THEOREM 6. With the above assumptions, we have the inequality

b—FE(X
(4.2) ‘%[F(x)+F(a+b—x)]—T(a—)
( _ 3a+b\ 2
é+2<xb—_;—) (6 —a) | £/l ae],00 if f € Lo [a,b];

1
L g+1] ¢
b I —a q+1 a+b - 1
< ( ) +< — (b= a)a [ fllfap,p-

if p>1, 11—,+-;-=1, and f € Ly|a,b];

b—a

for any = € [a, “—2—'*"’] , where E (X) is the expectation of X.

Proof. Follows by (4.1) on choosing g = F and taking into account
that

E(X):/b_tdF(t):b—/bF(t)dt. O

In particular, we have:

COROLLARY 5. With the above assumptions, we have

1 3a+b a—+ 3b b—E(X)
(4.3) 3 |:F< 1 >+F( 7 )] _b—T‘
4 1 .
- 0) [l i1 € Lo o8]
1 (b-a)
—a)a .
<< - _—‘—IHfH[a,b],p7 if P>1’ %+%:17 andfeLp[a,b];
(g+1)a
1
( 4~
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