Bull. Korean Math. Soc. 42 (2005), No. 2, pp. 231-244

COMPARISON FOR SOLUTIONS OF A SPDE
DRIVEN BY MARTINGALE MEASURE

NHANSOOK CHO

ABSTRACT. We derive a comparison theorem for solutions of the
following stochastic partial differential equations in a Hilbert space

H.
Lut = a(u?) M(t, ) + B (u?), fori=1,2,
where Lu® = —aaiti — Aut, A is a linear closed operator on H and

M (t,z) is a spatially homogeneous Gaussian noise with covariance
of a certain form. We are going to show that if 31 < (32 then
u! < 4?2 under some conditions.

1. Introduction

We want to derive a comparison theorem for solutions of stochastic
partial differential equations(SPDEs) driven by martingale measures.
Let M be a Gaussian noise, typically white in time but possibly with
some spatial correlation. Following the same approach as in Dalang|2],
M,;(B) = M([0,t] x B) is a worthy martingale measure with covariance
measure defined by

Q0. txAxB) = (M), MB) =t [ do [ dy1a@)f(=)1o0),

for some function f.

Let U be a bounded open set in R?. Assume that for i = 1,2, «, 3¢ are
globally Lipschitz with constant K, which implies |a(u)] < K(1 + |u|)
and |B*(u)] < K(1 + |u|). We consider this extension of the martingale
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measure stochastic integral to a comparison problem for the solutions
to the following SPDE:

(1.1) Lu' = a(u)M(t,z) + B (ut), for i =1,2, t >0, z €U,
where Lu? = %“t—i — Au?, A is a linear closed operator which generates a

strongly continuous semigroup on H = Lo(U) and M (t, z) is a spatially
homogeneous Gaussian noise with covariance of the form

(1.2) E(M(t,z)M(s,y)) = 0(t — 5)f(z - y).

In this equation, 6(-) denotes the Dirac-Delta function and f : R — Ry
is continuous on R¢ — {0}. The case f(z) = §(x) would correspond to
the case of space-time white noise.

u*(t, z) solves (1.1) in the following sense;

W(t,) = /U T(0, ~ y)ub(v)dy
(1.3) +/0 /UF(t—s,x—y)ﬁi(ui(s,y))dyds
+ /0 /U It~ 8, = y)au(s,) M (ds dy),

where I'(¢, z) is the fundamental solution of Lu = 0 with the hypothesis
mentioned later and the above stochastic integral is defined with respect
to the martingale measure in the sense of Walsh[11]. Since we consider
a solution of an SPDE at any point (t,z) € R x R? as a continuous
random field u(t, z) this problem is related with a class of function valued
SPDEs.

Dalang[2] showed that even though the integrand I" may be a dis-
tribution under some conditions, the value of the stochastic integral is
always an ordinary real valued random variable, and the stochastic in-
tegral process is a square-integrable martingale.

We are going to show that if 8! < 32, then u! < u? a.s. under some
conditions. We follow Dalang’s argument in [3] to assert the existence of
solutions for (1.1), which is specially applied to the heat equation both
linear and nonlinear, and parabolic equations. He found the condition
on the covariance function f in (1.2) under which the stochastic integrals
of Green functions are defined. It turns out that the condition is the
same for both the heat and wave equations.
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There is a lot of literature on comparison theorems of SPDEs. Spe-
cially for infinite dimension, you may refer to Assing, and Manthey|1],
GeiB and Manthey[6], Kotelenez[8], Pardoux[10], and Kallianpur and
Xiong[9]. The problem we have interest in this paper is motivated by the
work of C. Donati-Martin and E. Pardoux[4] and Kotelenez[7]. Donati-
Martin and Pardoux[4] proved a comparison theorem for white noise
driven SPDEs using an Ito’s formula and an approximation method.
Kotelenez[7] proved a comparison theorem for solutions of SPDEs in a
Hilbert space.

2. Preliminaries and assumptions

Let p be a nonnegative tempered measure on R? whose Fourier trans-
form is f. The relationship between p and f is, by the definition of
Fourier transform of tempered distributions that for any test function ¢

[ t@eteriz = [ Foeutas),
(2.1) Fu= [ expl-2int - z)u(de) = f(@)

Following the definition of Walsh[11], we consider a worthy martingale
measure M;(B) = M([0,t] x B), B € B(U) with covariance measure
defined by

Q([0,t] x A x B) = (M(A), M(B)):

— /U dz /U dyla(@)f(z — 1)15(y)

and dominating measure K = (). By construction of Dalang|2], { —
M,(B) is a continuous martingale. We also denote that for any test
function ¢

(2.2) 'Mt(d))E/o /U¢(x)M(dt,dac).
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Then

Bl(My(6))) = B [( I / P (dt’dm)>2]
/ / b(x Vo(y)dtdzdy
_ /0 ds /U u(do)\FH(E)P,

where F¢ is the Fourier transformation of ¢.

HyPOTHESIS A. Let S(t) = I'(¢,-) is the fundamental solution of
Lu=0.

(1) (¢, z) is a deterministic function with values in the space of non-
negative functions with rapid decrease such that for any T > 0

T
/ / I'(t, z)Pdzdt < Cp < o0, for p, 0 <p < 3.

@ ) lim o / (d€) sup |FS(r)(E) = FSHE)P = 0.

t<r<t+h

(ii) t — FS(t)(&) is continuous, for all £ € U.
(iii) there is € > 0 and a function ¢t — k(t) with values in the space

of non-negative functions with rapid decrease such that for all ¢ > 0 and
h € [0,¢

|FS(t+ h) (&) — FSE)E] < |Fk()(€), and

/0 dt /U J(dE)| FR(E)(E)? < oo

(3) There exists a predictable process h(z, s) satisfying
(M(A,t) < / h(z,s)dz ds, for all A € B(U),
Ax[0,t]

and sup, ¢y Supg<s<1 A(Z, s) < 0o a.s., where U is the closure of U.
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REMARK. (1) It is known that (see [2]), there is an integer p > 1 such

that )
o T <

(2) You may refer several examples for S(t) to Dalang’s paper[2).

(3) Specifically in the case of heat equation or parabolic equation
[(t,z) = (2mt)~ %2 exp(—|z|?/2t) or T'(t,z) < C(t)~¥? exp(—C|z|?/t),
respectively.

THEOREM 2.1. (Theorem 13 in [2]) If Hypothesis A(2) is satisfied
and a(-) and B%(-) (i = 1,2) are Lipshitz functions, then (1.1) has a
unique solution u‘(t, z).

Moreover, this solution is L?—continuous and for any T > 0 and p > 1

sup sup E(|u’(t,z)|P) < oo.
0<t<T zcU

Let H = Ly(U) and let N be a H-valued martingale process. We first
consider the following stochastic evolution equations on H: for z = 1,2

(2.3) du’ = (Au* + B (u))dt + a(u*)dN, u*(0) =u € H,

where a(u') = a(u'(-))(u’ = u'(-) € H) acts as a multiplication operator
on H. Similarly, 8*(u?) = B (u*(-)) i.e. B%(r) and a(r) are real valued
functions of r € R. || - || and (-,-) denote the usual norm and the scalar
product on H, respectively.

Kotelenez[7] derived a comparison theorem for the mild solutions of
(2.3), i.e., for the integral solutions of the integral equations; for i = 1,2,

(2.4) u(t, ) :/Ur(o,x — y)ub(y)dy
+/0 /UF(t -8, — y)ﬂi(ui(s,y))dyds

+/o I(t—s,z—)a(u'(s,-))dN

Existence, uniqueness, and smoothness for equations of type (2.3) have
been studied by Walsh[11], Funaki[5], Pardoux[10], Gei and Mant-
hey[6], and Kotelenez|8].
Constants will be denoted by C or K with possible subindices and the
same letter may denote different constants in the course of one proof.
Let U(t,s)f = Uy_of = [T(t — s,z — y) f(y)dy € H and make some
assumptions on (2.3) and (2.4).
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HyYPOTHESIS B.

B1) U(t,s) is a positivity preserving and strongly continuous semi-
group.

B2) uf is Fy—measurable and E|u}||? < oo, i = 1,2.

B3) a, 8 : H — R. For any T > 0 there is a finite constant K
satisfying

(2.5) 16°(0)] = |a(0)] =0, for i =1,2
(2.6) () — ay)| + |6 (z) - B(y)] < K|z —yl,
foralz,ye R,0<t<T,and i=1,2.

It was shown in Kotelenez[8] that the above assumptions imply the
existence of unique solutions u® of (2.4), which are Markov processes.
Since U(t, s) is strongly continuous semigroup, taking A, = n(Uy/, —I)
and U, = exp(A,), Uy, is obviously positive preserving and the following
(2.7) comes from Trotter’s theorem: for any T'> 0 and h € H

(2.7) sup ||(Un(t,s) = U(t,s))h| — 0 as n — oo.
0<s<t<T

3. A comparison theorem

We rewrite (1.1) as the following SPDE:

du(t, )

5 = Au(t,z) + a(u)M (¢, z) + B(u).

(3.1)

Let {ex} be an orthonormal basis of H and

t
(3.2) Mf = /0 /U ex(x) M (ds, dx).

{M*} | is a family of mutually independent martingale process. For
n > 1, let B™ be the H-valued martingale process defined by

(3.3) B' = MFe.
' k=1

We are going to take an approximation using a Kotelenez’ result. We
replace o and 3¢, i = 1, 2 by smooth functions o; and 3}, respectively(e.g.
by cutting off and using mollifiers) with the following properties:
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(3.4) (i) the j-th derivatives of o; and 3} are bounded continuous
for j =1,2;
(ii) B}(t,z) < BE(t,z) for all (t,z) € [0,00) x U;
(iii) B¢ — B'(t, z), au(t,z) — a(t,z) as | — oo for all (t,z) €
0,T]xU,i=1,2.
We consider the following approximate SPDE’s for ¢ = 1,2 with A,
described under Hypothesis B. We consider the following equations;

(3.5) duy = [Anupy’ + B (um?))dt + ou(upy) dBP,
(3.6) du™ = [Apu™ + B (u™)]dt + a(u™") dB™,
(3.7) du™" = [Au™" + B (u™")]dt + a(u™") dB".

Obviously, (3.5)—(3.7) have a unique solution which is a Markov process
for all [ and n including the limiting case. We adapt the following lemma
in (7]. uy')'(-,-) denotes the solution of (3.5) with initial value uf.

LEMMA 3.1(LEMMA 2.2 [7]). Assume Hypotheses A, B and (3.4) in
addition to u} < u? a.s.. Then for anyt,0 <t <T

(3.8) u™l(t, ) <u™(t, ) as..

n,l

For f € H, let || f|| = [, f(z)*da.

LEMMA 3.2. Under the assumptions of Lemma 3.1, there exists a
constant Cy such that for a predictable process f(s,-) with

E /OT ||f(s,-)||2ds] < o0,

one has

(3.9) sup <C,E

t<T

/ f(s,)dBr| /0 ’ nf(s,->||2ds] ,

where we consider f(s,-) as a multiplication operator.
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Proof. Tt is well known that we can choose {ex}g>,; which is an

orthonormal basis for H consisting of eigenfunctions for F; namely

Fey = (—i)*ex, and supy, SUPLepa [ex(Z)] < o0
Note that B* = Y .*, M/e;. By the Burkholder’s inequality for finite

dimensional martingale, we have that
E {
m
<CY E
i=1
= CZE / / )’ Fei(x )|2u(dw)d8)]

<Cy ZE / ),e:)2ds by Hypothesis A(3)

(S) )dB.:n

2
), ei)ei(x)M(ds, dx)

<e /0 E[lIf(s,)[?]ds

for some constants C, C; where the last two inequalities come from using
Fatou’s lemma and Parseval’s identity, respectively. W

THEOREM 3.3. Under the assumpﬁons of Lemma 3.1, for any t,
(3.10) ul(t,z) < u?(t,z) a.s..
Proof. We divide this proof into three steps.

Step1 El|u™(t,z) — qu’li(t,x)|2 — 0, as [ — oo for each t.

”]

p

Let p > 6.

Elup*(t,z) — upy (t,)[

C(E

+ FE

/0 U™t — ) (s, ) — B (W (s, ))]ds

/0 U™t~ 8)[a(ul(s, ) — oa(u (s, )BT

)

=TI+1I1I.
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(3.11)

2

II <CyE / U™ (t — 8)[e(ul™™) — oq(ul )]|| ds] by Lemma 3.2

<ob | [ 106 9fatu) -y IPas]

by Trotter’s theorem
p
2

<o t [ - y)[a(ums, ) - a2 (o)) s

<G, (// I (z— y)dyds) E// o) — o (upy) Pdyds

<C,F /sup|un (5,) = (s, ) Pds,
0 z2€U

p/2

5/2=T> 2q’ < 3 and for some constants C; and Cs. Similarly,

where ¢ =

t .
[<CiE / WU (2 = )[B () — G |Pds
t
<CiFp ( o= s - gz
0
(312) 4 UM - &) B - ﬁf(u;'fmnpds)
t
< C:E ( [ 18y — B + Kl - UZ‘,fI”ds)
0

t
_ G (¢::tf + / Blul — u?,;’l”ds> ,
0

for some constants Cs, C’3 by the same way as the above, where
ml’—E/ |8 (u™?) — BH(ul)Pds — 0 as | — oo
by the assumption (3.4) and the dominated convergence theorem. Hence

the Gronwall’s inequality implies that Elum™(t,-) — u;nf(t, P — 0 as
I — oo and so EjulM(t, ) — ul(t,-)]2 — 0 as [ — oo.
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Step 2 Elu™(t,-) — u™*(t,-)|* - 0, as n — oo for each t.

Elupht(t, ) — u™(t, )

<C (E /0 Ut - 5)8 (™ (s,-)) = U™t = 5)B* (uy* (s, ))]ds

+ K

p

)

/O Ut = s)a(™(s,)) — Un(t — s)a(um™i (s, )| dB™(s)

=I+1I.

o
2

<C E|(U - U")( s)ﬂi(um’i(s,-))l2ds>

e
2

(3.13)

2

<C

([
*(/ Elom (e (,-))—muw(s,.))‘zds)
( E‘U U )5i(“m’i(5,'))l2d8>2

+Cs (/ Elu™(s,- uzl’i(s’-)[pds) ,

by the same way as (3.11).
Also,

p

II<E / Ures(a(u™(s,)) — a(u™ (s, )))dBT"

p

t
+ / (Upes — UP.)a(u™i (s, -))dB™
0

< B ([ 10s(atumi(s,) - s, ) Pas )

B

¢ g
+ (/ (Up—s — Uf_s)a(unm’i(s, ~))||2ds> , by Lemma 3.2
0

B
2

t
<GE / ™ (s, ) — umi(s, ) Pds + (679)
0
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where ¢ Efo (U U™t -s)a(u™(s,-))||ds — 0 as n — oc.

Since the first term of (3 13) goes to 0 by (2.7), applying the Gron-
wall’s inequality again, Elu™¢(t,-) — u™%(t,-)]2> — 0 as n — oo for
each t.

Step 3 Elu™(t,-) —u'(t,-)|* — 0, as m — oo for each t.

E|lu™(t,z) — u'(t, )

/0 Ut — 5)B™(s,)) — U(t — 5)B(ui(s,)) ds

P
=F

+E /0 Ut - s)a(u™(s,-)) dB™

—/Ot/UU(t—s)a(ui( ,

t
I< Cz/ E[umz(s,) —ui(s,-)lpds,
0 N

<I+1II

by the same way as (3.11).
To estimate I/, consider

[ vte=9amsnimy - [ [ vie- s, )mds )
-3 / t (f [a(u%s,y))—a(um»%s,y))]rt_s(m—y)ek(wdy) aM*
/ | (Wiaton0) = W7 s )M (s, )
(6, 2) + I (b, 7),
where
U} (5,9) = a(u'(s,y))T—s(z —y), and

T (s,y) = i (/U a(u™ (s,2))Ti_s(x — 2) ex(2) dz) ex(y)-

k=1
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Ef[Im(t: z)"]

=oF U 5 (et = e

x Dy_s(z— y)ek(y)dy> d(M ’%]

2
2

<C\E [ /0 t kzzj ( /U [ (5,9)) — a(w™ (s, 9))

X I‘t_s(m—y)ek(y)dy) ds} .

{/ a(ui(s,)) — a(u™(s,y)) Te-s(z — y)ex(y) dy}2

3 Tst

= 3 (lafui(s, ) — o™ (s, N Tems(@ =), ex()’

k=1

< le(wi(s, ) — (™ (s, )] Te—s(z = )II*.
Therefore

E|Im(t, )P

<CiE ( / / (0w (s,9)) — o™ (,1)))T2_, (z - y)dyds) '
<CoF [ sup ™ (s,9) o, )P

0 yel
And

E L / (%, x)]pdm}

(s,y) — Ui (s,y)) M (ds, dy) dz

z
2

2]

—F / / GURCORLER ymm(dy)dsr

2
<CE [/ [ @t - W) Pdyds| =0
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as m — oo by the following (3.14)—(3.16) and the Dominated conver-
gence theorem.
Note that

10) [ (Wha(o) — W () = W (o)~ V(60 L0,

(315) ,\Pz,z(sv ) - ‘I’le’z(sa ),2 < I‘Il;‘,i,:c(s’ ')'2a

and almost surely,

B( / 1 (s, ds)
—F ( / / (o (5, DT (& y>>2dyds) :
(//thsx— dyds) E//|a Pdyds

<G\E sup!( “(s,9)|Pds
0 yeU

(3.16)

< 0,

where ¢’ = /2 and for some constants C and C.
By the above three steps, we get

E|u$f(t, ) —u'(t,)|* —» 0asl— oo, n — 0o, and m — oo.

From Lemma 3.1, for all (¢t,z) € [0,T] x U, uZ;l(t,m) < u::f(t,x) a.s..
Hence for all (¢,z) € [0,T] x U

ul(t,z) <u?(t,z) as.. a
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