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EXISTENCE OF EQUILIBRIA
VIA CONTINUOUS SELECTIONS

WoN Kyu KiM AND SANGHO KUM

ABSTRACT. The aim of this paper is to give three equilibrium ex-
istence theorems for generalized games with lower semicontinuous
constraint and preference multimaps by using Michael’s continuous
selection theorem.

1. Imtroduction

The theory of continuous selections of multimaps is an intensively
developing research area in recent decades, and there have been numer-
ous applications in fixed point theory, convex analysis, game theory and
other diverse branches of modern mathematics. Among a number of con-
tinuous selection theorems, Michael’s selection theorem|8] is well-known
and very basic in many applications.

In the last five decades, the classical Arrow-Debreu result[1] on the ex-
istence of Walrasian equilibria has been generalized in many directions.
Mas-Colell[7] has first shown that the existence of equilibrium can be
established without assuming preferences to be total or transitive. Next,
by using a maximal element existence theorem, Gale and Mas-Colell[5]
gave a proof of the existence of a competitive equilibrium without or-
dered preferences. Using Kakutani’s fixed point theorem, Shafer and
Sonnenschein(9] proved the powerful result on ‘the Arrow-Debreu lemma
for abstract economies’ for the case where preferences may not be total
or transitive but has open graph. As we have seen in the literature in-
cluding Borglin-Keiding[3], Gale-Mas-Colell[5], Shafer-Sonnenschein|9],
Yannelis-Prabhakar[10], in most results on the existence of equilibria for
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abstract economies, constraint and preference multimaps are assumed
to have strong open lower sections or open graphs, and also constraint
multimaps are assumed to be upper semicontinuous. Here, it should be
noted that we will encounter many kinds of constraints and preferences
in various economic situations (e.g., see Aubin[2]); so it is important
that we shall consider several types of constraints and preferences, and
obtain some existence results for such multimaps in general settings.

The main purpose of this paper is to give three new equilibrium ex-
istence theorems for generalized games with lower semicontinuous con-
straint and preference multimaps. First, we shall prove a maximal ele-
ment existence lemma by using Michael’s continuous selection theorem,
and obtain a fixed point theorem as a corollary. Next, we shall prove
three equilibrium existence theorems for generalized games with lower
semicontinuous constraint and preference multimaps without assuming
upper semicontinuity nor open lower sections. Hence our results are
comparable to the previous equilibrium existence results due to Shafer-
Sonnenschein[9], Borglin-Keiding[3], Gale-Mas-Colell[5] and Yannelis-
Prabhakar(10].

2. Preliminaries

Let A be a subset of a topological space X. We shall denote by 24
the family of all subsets of A and by ¢l A the closure of Ain X. If Ais a
subset of a vector space, we shall denote by co A the convex hull of A. If
A is a non-empty subset of a topological vector space X and S, 7T : A —
2% are multimaps (or correspondences), then coT, clT, co T, TN S :
A — 2% are multimaps defined by (coT)(z) = coT(z), (cIT)(x) =
cdT(z), (co T)(z) = cl(coT(x)), and (T N S)(z) = T(z) N S(z) for each
x € A, respectively.

Let X,Y be non-empty topological spaces and T : X — 2¥ be a
multimap. A multimap 7 : X — 2Y is said to be upper semicontinuous
(in X) if for each € X and each open set V in Y with T'(z) C V, there
exists an open neighborhood U of z in X such that T(y) C V for each
y € U; and a multimap 7 : X — 2Y is said to be lower semicontinuous
(in X) if for each z € X and each open set V in Y with T(z)NV # 0,
there exists an open neighborhood U of x in X such that T'(y)NV # @ for
each y € U. It is also known that T : X — 2Y is lower semicontinuous in
X if and only if for each closed set V in Y, the set {x € X | T(z) C V}
is closed in X.
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Here we note that by the definition, T" is automatically lower semi-
continuous at every x where T'(z) = §), and also note that if 7" has open
lower sections (i.e., T7!(y) is open for each y € Y), then T is lower
semicontinuous, e.g., see Yannelis-Prabhakar ([10, Proposition 4.1]).

Let X and Y be non-empty topological spaces, and A be a non-empty
subset of X. Let T : A — 2 be lower semicontinuous in A4, and let
Ty : X — 2Y be a multimap defined by

T(z) if ze€ A4,
Tl(x):{o if z¢A

If A is open in X, then it is easy to see that 7} is a lower semicontinuous
multimap in X. However, if A is closed in X, then T is not necessarily a
lower semicontinuous multimap in X. For example, let T : [0,1] — 202!
be defined by T'(z) := [2 ~ z,2] for each z € [0,1]; and let 77 : [0,2] —
2(9:2] he defined by

2-2,9 if zel0,1],
Tl(“):{(a if ze (1,2

Then, it is clear that T' is lower semicontinuous in [0, 1], however T} is
not lower semicontinuous at 1.

Finally we recall the following definition of equilibrium theory in
mathematical economics due to Shafer-Sonnenschein[9] or Borglin-
Keiding[3]. Let I be a finite or.an infinite set of agents. For each
i € I, let X; be a non-empty set of actions. A generalized game (or
an abstract economy) I' = (X, A;, P;)ier is defined as a family of or-
dered triples (X;, A;, P;) where X; is a non-empty topological vector
space (a choice set), A; : Iljer X; — 2% is a constraint multimap
and P, : Ije; X; — 2% is a preference multimap. An equilibrium
for T is a point £ € X = Il;e; X; such that for each ¢ € I, I; €
cl Ai(Z) and P;(Z) N A;(£) = 0. In particular, when I = {1,--- ,n}, we
may call I' an n-person game.

In mathematical models of economies, the value A;(z) of constraint
multimap is usually consumer’s budget set, and the value P;(x) of prefer-
ence multimap is usually consumer’s preferences for commodities. In the
theory of game, the value A;(z) is player’s possible actions or strategies,
and the value P;(z) is player’s preferences over strategy vectors. Hence
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the equilibrium choice or action means the best choice of maximal prefer-
ence under his/her budget restriction for every consumer simultaneously,
or the strategy vector in which no player, acting alone, can benefit from
changing his/her strategy choice.

The following continuous selection theorem due to Michael[8] is es-
sential in proving our main result :

LEMMA 1. Let X be a non-empty paracompact Hausdorff topological
space and Y be a Banach space. Let T : X — 2¥ be a lower semicon-
tinuous multimap such that each T'(z) is non-empty closed convex in Y.
Then T has a continuous selection, i.e. there exists a continuous map
f:X — Y such that f(z) € T(x) for each z € X.

Now we shall prove the following

LEMMA 2. Let X be a non-empty compact convex subset of a Banach
space, and let T : X — 2% be a lower semicontinuous multimap such
that x ¢ o T(x) for each x € X. Then there exists a maximal element
ze X forT, ie, T(z)=0.

Proof. Suppose the contrary, then T'(z) is non-empty for each z € X.
Consider the multimap ¢ T : X — 2% defined by

(co T)(x) :=cl (coT(z)), for each z € X.

Then, by Propositions 7.3.3 and 7.3.17 in Klein-Thompson [6], ¢@ T
is also lower semicontinuous in X and each o T'(z) is a non-empty
closed convex subset of X. By Lemma 1, there exists a continuous map
f : X — X such that f(z) € ¢ T(z) for each x € X. Then, by
Schauder’s fixed point theorem, f has a fixed point £ € X such that
Z = f(z) € ¢o T(Z), which contradicts the assumption. Therefore, T
has a maximal element. O

REMARK. Lemma 2 is different from the previous many maximal el-
ement existence theorems as we mentioned before. In fact, in Lemma
2, we do not require the upper semicontinuity assumption on 7" nor the
open lower section assumption on 7', but we do need the continuous
selection property for 7" so that X is assumed to be a compact convex
subset of a Banach space.

We can restate Lemma 2 as the following fixed point theorem.
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COROLLARY 1. Let X be a non-empty compact convex subset of a
Banach space, and let T : X — 2% be a lower semicontinuous multimap
such that T'(x) is non-empty for each x € X. Then there exists a point
Z € X such that T € ¢ T(z).

3. Existence of equilibrium for generalized games

We begin with the following new equilibrium existence theorem :

THEOREM 1. Let I' = (X, A;, P,)ic1 be a generalized game where I
be a finite set of agents such that for each i € I,
(1) X, is a non-empty compact convex subset of a Banach space, and
denote X =1l;c1 X, ; _
(2) the multimap A; : X — 2%i is lower semicontinuous in X such
that A;(z) is a non-empty convex subset of X; for each x € X;
(3) the multimap A; N P; is lower semicontinuous in W; such that
(A; N P;)(x) is (possibly empty) convex for each x € X ;
(4) the set W; := {z € X | (A; N P;)(x) # 0} is (possibly empty)
closed in X;
(5) for each z € W, z; ¢ cl Pi(z).
Then there exists an equilibrium point & € X for T, i.e., for each
tel,
Z; € cl AZ(CE) and AZ(Q_J) N Pz(i‘) = .

Proof. For each i € I, we first define a multimap ¢; : X — 2%¢ by

64(z) { cl Ai(z) if ¢ W,

i\T) =

Then for each z € X, ¢;(z) is a non-empty closed convex subset of X;.

Since W; is closed, ¢; is a lower semicontinuous multimap in X. In fact,

for every closed subset V of X;, we have

U:={zecX|¢i(z) CV}

={zeW;|di(x) cVIU{zr e X\ W, | pi(z) CV}
={zeW,|dd;nP)z)CcVIU{ze X\W,|dAi(z) CV}
={zeW,|dA;NP)z)ycViu{ze X |cdA(z)CV}.

Since W is closed and cl (A; N P;) is lower semicontinuous in W;, the
set {x € W; | cl(A; N P;)(z) C V} is closed in X. Since cl A; is lower
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semicontinuous in X, the set {x € X | cl A;(z) C V'} is closed in X, and
hence we have U is closed in X. Therefore, ¢; is lower semicontinuous
in X.

We now define a multimap ® : X — 2%, by

®(z) :=Iier ¢i(x) for each z € X.

Then, by Theorem 7.3.12 in Klein-Thompson[6], ® is also lower semi-
continuous such that each ®(x) is non-empty closed convex. Note that
X =I5 X; is a non-empty compact convex subset of a Banach space.
Therefore, by applying Corollary 1 to ®, there exists a point T € ®(Z),
ie., foreach i € I, Z;, € ¢;(Z). If T € W; for some i € I, then

z; € ¢z(.’}f) =cl (Al N Pz)(f) Ccl Pz(il_i),

which contradicts the assumption (5). Therefore, for each i € I, Z ¢
Wi, ie., T; € ¢;(Z) = cl A;(Z) and (A4; N F;)(Z) =0. This completes
the proof. ‘ O

REMARKS. (i) Theorem 1 is different from the previous many equi-
librium existence theorems as we mentioned before. In fact, in Theorem
1, we do not require the upper semicontinuity of A; nor the open lower
section assumption on A; N P;, but we only need the weaker lower semi-
continuity assumptions on A; and 4; N P;.

(i) As remarked before, since the set W; is closed, A;NP; is not needed
to be lower semicontinuous in X. If A;NP; is lower semicontinuous in X,
then we have W; = {z € X | (AiNP)(z) £ 0} ={x € X | (4;NP)(z)N
X; # (0} is an open subset of X. In this case, since X is connected the
set W, might be empty-set or the whole space X.

(iii) In case the product space X = Il;c;X; is a non-empty compact
convex subset of a Banach space (e.g., X = Il,en[0, £] is a Hilbert cube),
then we can apply Lemma 2 so that the index set I is possibly infinite
without affecting the conclusion.

In Theorem 1, the condition (3) is weaker than the corresponding
open lower section or open graph assumptions. In fact, we can give
a simple example of a generalized game with finite number of agents
which Theorem 6.1 in Yannelis-Prabhakar[10], Theorem in Shafer-
Sonneinschein[9] or Theorem 4 in Ding-Tan[4] cannot be applied:

EXAMPLE 1. Let I' = (Xk, Ak, Pr)rer be a generalized game where
foreachk € I = {1,2,--- ,n}, let X; = [0, 1] be a compact convex choice



Existence of equilibria via continuous selections 263

set, X := Izecr X (we simply denote it by X;"), and the multimaps
Ag, P : X — 2% be defined as follows :
for each z = (x1,22, -+ ,zn) € X,

[O,x’,:] if z€ X withVz; €[0,3),

{0} otherwise;

Pue) = { {0}  if z€X withVz; € [, 7],
0 otherwise.

Then it is easy to see that Wy = [3r, zz=r)" is non-empty closed in X

for each k € I. Also, for each x € Wy, = ¢ cl Pi(x) = {0}. And.it
is easy to see that Ay is not upper semicontinuous at (3, -, 1), but
lower semicontinuous in X. Also, each AxN Py is constant in Wy, so it is
lower semicontinuous in Wj. Therefore, all hypotheses of Theorem 1 are
satisfied so that there exists an equilibrium point z = (0,0,---,0) € X
such that Z, € Ax(Z) and Ax(Z) N Pi(Z) = 0 for each k € I. Here we
note that each P does not have open graph nor open lower sections,
and Wy, is not open, so that Corollary 3 in Borglin-Keiding[3], Theorem
6.1 in Yannelis-Prabhakar{10], Theorem in Shafer-Sonneinschein[9] or
Theorem 4 in Ding-Tan[4] can not be applied to this game.

The next simple example of 1-person game shows that the lower semi-
continuity of A; is essential in Theorem 1:

{1} foreachz =1,
Alz) := 1 L 1

{3} foreachz€[0,3)U(5,1];
P(x):={1—x} for each z € [0, 1].

Awl(z) == {

Then it is easy to see that A is not lower semicontinuous at % We can see
that W = § is closed, and hence all assumptions, except the assumption
(2), of Theorem 1 are satisfied. We know that A(z) N P(z) = § for
each = € [0,1], and A has no fixed point in [0,1]. Therefore, there can
not exist an equilibrium for this game, and so the lower semicontinuity
assumption on A; is essential in Theorem 1.

Next, using Lemma 2, we prove another equilibrium existence theo-
rem for an 1-person game :

THEOREM 2. Let I' = (X, A, P) be an 1-person game such that

(1) X is a non-empty compact convex subset of a Banach space ;
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(2) the multimap A : X — 2% is lower semicontinuous in X such

~ that A(z) is a non-empty convex subset of X for each x € X;

(3) the multimap A N P is lower semicontinuous in F such that
(AN P)(z) is (possibly empty) convex for each z € X ;

(4) theset F:={zx € X |z € cl A(x)} is closed in X;

(5) foreachz € F, z ¢ cl P(z).

Then there exists an equilibrium point Z € X for T, i.e.,

ZecdA(x) and A(Z)NP(Z)=0.

* Proof. We first define a multimap ¢ : X — 2% by

_ [ cA(z) if z¢F,
d)(m)_{cl(AﬂP)(a:) it zefF

Then for each z € X, ¢(x) is a (possibly empty) closed convex subset
of X. Since F is closed, by repeating the same argument in the proof of
Theorem 1, ¢ is a lower semicontinuous multimap in X such that each
¢(x) is closed convex. By the assumption (5), we have x ¢ ¢(x) for each
x € X. Therefore, the whole assumption of Lemma 2 are satisfied so
that there exists a point £ € X such that ¢(Z) = 0. Since each A(z)
is non-empty, we conclude that Z € F and (AN P)(z) = §. Therefore,
T € X is the desired equilibrium for this game. This completes the
proof. O

In Theorem 2, if A is upper semicontinuous, then ¢l A is also upper
semicontinuous so that the fixed point set F for ¢l A is closed. Hence,
the condition (4) is automatically satisfied.

Let T = (Xj, A;, P,)ics be a generalized game. Then we may call an
agent j € I is decisive for the game I' if (A; N P;)(xz) = 0 implies
(A; N P;)(z) = @ for each ¢ € I. The concept of a decisive agent for
the game T is meaningful for an incomplete market having monopolistic
agent or an oligopolistic market in a real economy. Also, this concept
is automatically satisfied for an 1-person game.

If there exists some decisive agent, we can obtain an equilibrium ex-
istence theorem for generalized game as follows:
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THEOREM 3. Let ' = (X;, Ay, P;);cr be a generalized game where |
be a finite set of agents such that for each i € I,

(1) X is a non-empty compact convex subset of a Banach space, and
denote X =1, X; ;
(2) the multimap A; : X — 2%¢ is lower semicontinuous in X such
that A;(z) is a non-empty convex subset of X; for each z € X;
(3) theset F,:={x € X | x; € cl A;i(x)} is closed in X.
Assume further that there exists some decisive agent j € I such that

(4) the multimap A; N P; is lower semicontinuous in F such that
(A; N P;)(x) is (possibly empty) convex for each z € X ;
(6) for each x € F := ;e Fi, z; & Pj(x).

Then there exists an equilibrium point T € X for T, i.e., for each i € I,

T; € cdl A;(Z) and Ai(Z) N Pi(z) = 0.

Proof. Since each cl A; is lower semicontinuous, by Theorem 7.3.12
in Klein-Thompson[6], the multimap A : X — 2%, defined by A(z) :=
I;crcl A;(z) for each z € X, is lower semicontinuous such that each A(x)
is non-empty closed convex subset of a compact convex set X = Il;¢1X;
in a Banach space. By Corollary 1, there exists a fixed point Z € X such
that Z € A(Z), i.e., Z; € A;(Z) for each i € I. This means that Z € F.
Since F; is closed for each 7 € I, F is closed and non-empty.

For the decisive agent j € I, we now define & : X — 2%, by

o(z) { Iiescl Ai(z) if z¢F,
x) =
Mien el Ai(z) x cl (A; N Py)(z) if zeF;

where the product is in order.

Then, by the assumption (4) and Theorem 7.3.12 in Klein-Thompson
[6], the multimap ;e\ 53¢l A; x cl (A;0P;) is also lower semicontinuous
in F. Since F is closed, by repeating the argument of the proof in
Theorem 1, we can show that ® is also lower semicontinuous in X such
that each ®(z) is non-empty closed convex. By the assumption (5), it
is clear that = ¢ ®(z) for each ¢ € X. Therefore, the whole assumption
of Lemma 2 are satisfied so that there exists a point Z € X such that
®(z) = 0. Since H;ercl A;(Z) and A;(Z) are non-empty, we must have
Z € F and (A; N P;)(Z) = 0. Since Z € F, T € F; for each ¢ € I so that
Z; € cl A;(Z) for each i € I. Also, since j is a decisive agent for this
game, we have (A; N P;)(Z) = 0 for each ¢ € I. Therefore, T € X is the
desired equilibrium for this game. This completes the proof. O
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As we remarked before, if we assume further that each A; is up-
per semicontinuous, then the assumption (3) is automatically satisfied.
Moreover, if the product space X = Il;¢;X; is a non-empty compact
convex subset of a Banach space, then the index set I is possibly infinite
without affecting the conclusion.

Finally, we give an example of a generalized game with finite number
of agents where Theorem 3 is applicable but the previous known results
can not work :

EXAMPLE 2. Let I' = (Xg, Ay, Pi)rer be a generalized game where
for each k € I = {1,2,---,n}, let Xy = [0,2] be a compact convex
choice set, X := Ilyc; Xk, and the multimaps Ag, P, : X — 2%* be

defined as follows :  for each z = (21,22, - ,2,) € X,
1 k+1
Ao =15 5 ]
( (k+2 ) 141
{W} if @ € Mhies [OT)
Pi(z) == k+2] . i+1
[O,E{—— if QJEHze[ 2—7,,2 3
{ 0 otherwise.

Then it is easy to show that the multimap A is lower semicontinuous
on X such that each Ai(z) is non-empty closed convex, and the fixed
point set F(A) of A = i1 Ag is equal to the set er][%, —'92’%1], which
is compact convex. Also it is easy to check that for each k € I, Ax N
Py is lower semicontinuous at every point x € X. Note that for each
x € F, z € [+, 52] so that z;, ¢ Py(x) since Py(z) is either {&f2
or an empty-set. And we know that the preference multimap Py is
decreasing and so the first agent is decisive in this game. In fact, if
(A1 N P )(z) = 0, then (Ax N Py)(z) = @ for each k € I. Hence,
the assumptions (3)—(5) of Theorem 3 are satisfied for the first index
1 € I. Therefore, all assumptions of Theorem 3 are satisfied so that we
can obtain an equilibrium point = (1, %, %, SR "2—';1) € X such that
2k € Ak(Z) and Ag(2) N Pe(2) = 0 for each k € I.
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