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REAL HYPERSURFACES OF THE JACOBI
OPERATOR WITH RESPECT TO THE STRUCTURE
VECTOR FIELD IN A COMPLEX SPACE FORM

SEONG S00 AHN

ABSTRACT. We study a real hypersurface M satisfying L¢S = 0
and R¢S = SR¢ in a complex hyperbolic space H,C, where S is the
Ricci tensor of type (1,1) on M, L, and R¢ denotes the operator
of the Lie derivative and the Jacobi operator with respect to the
structure vector field € respectively.

0. Introduction

A Kaehlerian manifold of constant holomorphic sectional curvature
c is called a complex space form. As is well known a complete and
simply connected complex space form is a complex projective space P,C,
a complex Euclidean space C,, or a complex hyperbolic space H,C
according as ¢ > 0,c=0or ¢ < 0.

In his study[18] of real hypersurfaces of P,C, Takagi showed that all
homogeneous real hypersurfaces could be divided into six types and in
[3] Cecil-Ryan and Kimura[9] proved that they are realized as the tubes
of constant radius over Kaehlerian submanifolds. Namely he proved the
following

" THEOREM T. [18] Let M be a homogeneous real hyperspace of P,C.
Then M is a tube of radius r over one of the following Kaehlerian sub-
manifolds:

(A1) a hyperplane P,_,C, where 0 <r < 3,
(A2) a totally geodesic P,C(1 <k <n—2), where0 <r < 3,
(B) a complex quadric Qn_1, where 0 <1 < %,
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(C) PiC x Pyp_1y/2C, where 0 < r < % and n(> 5) is odd,

(D) a complex Grassmann G 5C, where 0 <r < § andn =9,

(E) a Hermitian symmetric space SO(10)/U(5), where 0 < r < %
and n = 15. '

In what follows the induced almost contact metric structure of a real
hypersurface in a complex space form is denoted by (¢,g,&,m). The
structure vector £ is said to be principal if A§ = af, where A is the
shape operator in the direction of the unit normal and a = n(A¢&).
We denote by V and S, the Levi-Civita connection with respect to the
Riemannian metric tensor g and the Ricci tensor of type (1,1) on the real
hypersurface respectively. Theorem T is generalized by many authors
([1], [6], [9], [10], [11], [12], [16] etc.) Onme of them, Maeda asserts the
following theorem :

THEOREM M. [13] Let M be a real hypersurface with constant mean
curvature in P,C (n > 3) on which & is a principal curvature vector and
the focal map ¢, has constant rank on M. If V¢S = 0, then M is locally
congruent to one of A1, As, B, C, D, and E.

On the other hand, real hypersurfaces of H, C have been also investi-
gated by many geometers ([2], [14], [15], [16] etc.) from different points
of view. In particular, Berndt proved the following:

THEOREM B. [2] Let M be a real hypersurface of H,C. Then M
has constant principal curvatures and £ is principal if and only if M is
Iocally congruent to one of the following:

(Ag) a self-tube, that is, a horosphere,
(A1) a geodesic hypersphere or a tube over a hyperplane H,,_,1C,
(Ag) a tube over a totally geodesic H,C(1 < k <n —2),

(B) a tube over a totally real hyperbolic space H,R.

For a real hypersurface of H,,C, Ki, Kim and Lee proved the following

THEOREM KM. [7] Let M be a real hypersurface of H,C. If the
structure vector § is principal and if V¢S = 0, then M is locally congru-
ent one of Ag, A1 or As.

Denoting by R the curvature tensor of a real hypersurface, we define
the Jacobi operator R¢ = R(-,£)§ with respect to the structure vector
&. Then R is a self-adjoint endomorphism on the tangent space of the
real hypersurface.
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In this paper we study a real hypersurface of a complex hyperbolic
space H,C which satisfies L¢S = 0 and R¢S = SR, where L¢ denotes
the operator of the Lie derivative with respect to &.

All manifolds in the present paper are assumed to be connected and
of class C*°.

1. Preliminaries

Let M be a Kaehlerian manifold of real dimension 2n equipped with
an almost complex structure J and a Hermitian metric tensor G. Then
for any vector fields X and Y an M, we have

JP=-X,G(JX,JY)=G(X,Y), VJ=0,

where V denotes the Riemannian connection of M. _

Let M be a real (2n — 1)-dimensional hypersurface of M covered by a
system of coordinate neighborhoods {U;z"} and isometrically immersed
in M by the immersion ¢ : M — M. When the argument is local, M
need not be distinguished from (M) itself. Throughout this paper the
indices 4,j,k,-+- run form 1 to 2n — 1 and the summation convention
will be used. We represent the immersion ¢ locally by

y =y (M), (A=1,---,2n—1,2n)

and put B; = (BjA), (0; = 8/8,7) then B; are (2n — 1)-linearly inde-
pendent local tangent vectors of M. A unit normal C' to M may then
be chosen. The induced Riemannian metric g with components g;; on
M is given by gj; = GpaB;® B;* because the immersion is isometric.
For the unit normal C to M, the transformations of B; and C by J
are respectively represented in each coordinate neighborhood as follows:

JB; = ¢,"By + &C, JC = —¢'B;,

where we have put ¢;; = G(JB;,B;) and & = G(JB;,C), &" being
components of a vector fields { associated with &; and ¢;; = ¢,"gr;. By
the properties of the almost Hermitian structure J, it is clear that ¢ ; is
skew-symmetric. A tensor field of type (1,1) with components ¢;" will
be denoted by ¢. By properties of the almost complex structure J, the
following relations are then given. -

¢ir¢rh = _(sih + £i€h> €T¢rh = 07 §T¢ir = Oa glé-z = 17
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that is, the aggregate (¢, g, &) defines an almost contact metric structure.

Denoting by V; the operator of van der Waerden-Bortolotti covariant
differentiation with respect to g and G, equations of Gauss and Wein-
garten for M are respectively given by

VjBi = AjiC’, V]C = —AjrBr,

where A = (Ajh)7 which is related by A;; = Aj’“ gr; 18 the shape operator
in direction ¢'. By means of above equations the covariant derivatives
of the structure tensors are yielded:

(1.1) Vgt = AlE — Ajgh, V& =—-Aje,".

If the ambient space M is a Kachlerian manifold of constant holo-
morphic sectional curvature ¢, which is called a complex space form and
denoted My (c), then equations of Gauss and Codazzi are respectively
given by

C
(1.2) Ryjin = ;l(gkhgji — GjnGki + PknPji — PinPri — 20k;Din)
+ ApnAji — Ajp Ak,
N C
(1.3) ViAj — VA = Z(§k¢ji — &0k — 26i0x;),

where Ry ;;n are components of the Riemann-Christoffel curvature tensor
Rof M. .
From (1.2) the Ricci tensor S of type (1,1) with components th is
verified that
c
(1.4) Sh= 71@n+ 18" —3¢;6"} + A — AT AR,

J

where h = TrA. Hereafter, to write our formulas.ir; convention form, we
denote by A;2 = A; A", = Aj&IE, = A 2698, and v = A, 2¢7¢"

If we put U = V&, then U is orthogonal to the structure vector &.
Because of properties of the almost contact metric structure and the
second equation of (1.1), we have

(1.5) U'Vj& = AP — adj €T,
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(1.6) ¢;-U" = A" — ag;,

which shows that g(U,U) = 8 — o?.
Differentiating (1.6) covariantly along M and using (1.1), we find

(1.7) fj(AkrUr + ag) + ¢jrka =& VA — AjrAksd;’"s + aAkT¢j’",
which unable us to obtain
(1.8) (ViAps)ETE° =245, U" + ay,

where oy = 0.
Now, we put

(1.9) A& = al+ pW,

where 1+ is a function on M, and W is a unit vector orthogonal to &.
Then we have u?2 = 8 — o? and ¢U = —uW. Hence it is, using (1.1),
seen that

(1.10) PET Wy = A U”

because £ and W are mutually orthogonal.

2. Real hypersurfaces satisfying LS =0
Let M be a real hypersurface of a complex space form M,(c),c # 0.
By definition, the Lie derivative of the Ricci tensor S with respect to
the structure vector £ is given by
LSt =€V, 5" + (V608" = (V.4")8;,
or using the second equation of (1.1),

Lgsjh — grvrsjh + Art¢htsjr _ Ajt(prtsrh-

In what follows we assume that the Ricci tensor S satisfies L¢S = 0,
that is,

(2.1) £V, Sji = Ajed,tS;" — Ared;tS;T,



284 Seong Soo Ahn

which shows that
(22) (Ajt(ﬁ,rt + Art¢jt)sir = (Ait()brt + Artd)it)sj

From (1.4) we get

(23) ]7‘& - (TL - 1)&] + hAJrgr Ajr2£r,

(24)  Sjrd" + Sud” = h(A;rd" + Aind)) — A0 — A8)
Because of (2.2) and (2.4), it follows that
(Sjr¢ir + Sird)jr)(Atjﬁbit + Ati¢>’t) =

Hence, by applying Atj ¢ to (2.2) and making use of (2.3) we obtain
(see [11])

(2.5) C1IS6— 8|2+ Sellul =o.

Therefore if ¢ > 0, then we have S¢ = ¢S and U = 0, and consequently
« is locally constant on M ([8]). Using the fact that A = &, it is clear
that SA = AS. Hence (2.1) is reduced to VS = 0.

Now, suppose that g(S¢, &) = const. Then by (2.3) we have g(S¢,§) =
£(n—1) — &® + ha by virtue of § — a® = 0.

According to Theorem M, we have

THEOREM 2.1. Let M be a real hypersurface satisfying L¢S = 0
in a complex projective space P,C(> 3). If g(S¢,&) = const., then
M is locally congruent to one of Aj, As, B,C, D, and E provided that

g(Ag, &) #0.

For a real hypersurface of a complex hyperbolic space H,C, it is
known that

THEOREM K. [5] Let M be a real hypersurface of H,C. If it satisfies
L¢S =0 and S§ = o€ for some function o on M, then & is principal.



Real hypersurfaces of the Jacobi operator 285
3. Jacobi operators of real hypersurfaces

Let M be a real hypersurface satisfying L¢S = 0 in a complex hyper-
bolic space H,C. We define the Jacobi operator field Rx = R(-, X)X
with respect to a unit vector field X. Then from (1.2) we have

(Re)je = z(gjz‘ — &€ + adji — (A;5r€7)(Aisl?).
Suppose that R¢S = SRe. Then we have
(45267 (Aug®) — (A28 (A54°)
= (A;26) (hAist® = 6) = (4,26 (hAsE® = 16))
+ Th(EAE — & ARED),

which implies that

(3.1) ‘@A,;3¢" = (ah - E)A 27+ (y— Bh + gh)Ajrf’" + E(ﬂ — ha)é;.

jr
Combining the last two equations, it follows that
(A;7€7)(Ais€® — &) = (A3 €")(Ajs€" — a5) = B§ A5 = &Ar€T)-
Multiplying AJ¢ S to the last equation and summing for j, we find
prA%E = (v — ) AL + (B2 — ).
If 4 # 0, then we have
(3.2) A%E = pAE + (B — pa)é,

where we have put u?p = v — Ba, p?(8 — pa) = 32 — ary, which shows
that

A% = (p* + B — pa) A€ + p(B — par)é.
Thus (3.1) implies that (h — p)(8 — pa — §) = 0 because of u # 0.
Therefore we have

(3.3) u(h = p)(B — po — E) =0
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on M.

Let Qg be a set of points in M such that p(8 —pa— §) # 0. Then we
have h = p on Q. Thus (3.2) turns out to be A%2¢ = hA¢ + (B — ha)
and hence S¢ = o€ on Qg because of (2.3), where we have put o =
£(n — 1) + ha — B. Owing to Theorem K, it is seen that A{ = af, a
contradiction. Therefore (3.3) is reduces to

‘ c
(34) u(B — pa~ ) =0
on M.
In the following we assume that y # 0 on M, namely, £ is not a
principal curvature vector and we put Q = {p € M : u(p) # 0}. Then

is an open subset of M. From now on we discuss our arguments on §.
From (3.4) we have

(3.5) £ = pa+ 2

Thus (3.2) becomes

(3.6) A% = pAE+ ZE.
From (1.9) and (3.6), we obtain

(3.7) AW = p+(p— )W

because of p # 0, which enable us to obtain

(3.8) A2W = pAW + %W.

Making use of (3.5), (3.6), and (3.7), the relationship (1.5) turns out
to be

(3.9) U™V& = pA; W
Differentiating (3.7) covariantly along M, we find

(ViAjr) W™ + A, VW'

3.10
(3.10) = i€ + uVié&; + (px — )W + (p — ) Vi Wj.
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Applying this by W7 and taking account of (1.10) and (3.7), we find
(3.11) (ViAps \WW?® = =2A,U" + pp — g

because £ and W are mutually orthogonal. In the same way, we have
from (3.10)

(3.12) (Vi Ars )WTE = (p — 2a) Ak, U + ppag,

or using the Codazzi equation (1.3) and the fact that u? = 3 — o2,
c 1 '
(3.13) (VA )W7TE° = (p — 2a) A, U — §Uk + 5&; — aoy.

Differentiating (3.6) covariantly and using (1.9), we find
(@ = p)(ViA;r)e" + u(VeAjr )W + Ajr (Vi AS)E
3.14
( ) = ,OkAjrﬁr - Ajrzkar + PAerkﬁr + zkaj;

from which, making use of (1.3), (1.8), and (3.12),
c - - 1
(3.15) 3A,;2U" —2pA;U" — 505 = (pe&")Ajr€" — Ajra” + paj — 50

If we take the skew-symmetric part of (3.14) and using (1.1) and (1.3),
then we obtain

Ars(ViA)E — Ajs(Vi AP )E™ + prAjrE” — pjAgeE
C C
= 7 Uk&; = Uj&k) + 5(p — o) + Ay A9 — Al Agsd™
C
+2pAjr Aksd™ + 7 (Akrd)” — Ajrdy)-

Applying this by uW? and taking account of (1.3), (1.8), (1.9), (3.7),
(3.8), and (3.13), we find

¢
4
= pAjrp” + (o = p)ppy + 1> (p; — a5) — p(peW*) A€

(Ba —2p)A,;2U" + (2p° — 2pa+ ¢)A;;U" + ~(a — p)U;

(3.16)

On the other hand, since we have (3.6), the equation (2.3) is reduces
to

(3.17) S5 = 220 - 3) + (h— )A€

>0
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Applying (2.2) by &’ and using (1.4), (3.6), and (3.17), we get

(3.18) AU = (2h — p)A;; U + (02 — hp + c)U;.
Because of (1.4), (3.7), and (3.8), it follows that

(3.19) SirW" = u(h — p)§; + zWj,

where we have put z = §n + (p — a)(h — p).

If we transform uW?* to (2.2) and take account of (3.7) and (3.18)
we also find

(320) (2o~ Y+ 3e 45,07 = {olp — b)? = Sc(a+ h = 20)}T;
From (3.17) we have
(VeSir)E™ + SrVi€” = 7(2n = 3)Vits + (i — pi) Asr€”
+ (h = p)(VeA;r)E" + (b — p)Ajr Vg,
which together with (1.4), (1.8), (2.1), and (3.17) gives
(3-21) 3(p— M) A;xU” = plp — WU; = (st — pi€*)Ajrl™ + (h — p)a;.

LEMMA 3.1. €t = 0, W* = 0, p1&t = 0, p;W?t = 0, and hytt = 0
on €.

Proof. Applying (3.21) by & or W7 and making use of (1.9), we
obtain respectively

(3.22) a(hg’ — pi€) + (b — p)asét =0,
p(he€® — pi€t) + (h — p)oy W' = 0,

which enable us to obtain
(3.23) po€t = aa, W,

By the way, combining (3.11) and (3.12), we have

1
M(Ptft - Oftft) = ‘z*ﬁtWt - OZOétWt,
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where we have used the fact that u? = 8 — o?. Thus, it follows that
(3.24) BWt = 2l~bptft-

Next, multiplying (3.15) with ¢/ and summing for j, and using (1.9)
and (3.5), we find

20 W' = apit' + (p — 20) o€’
which together with (3.23) yields
(3.25) i€t + (pa — 2B)at = 0.
Because of (2.1) and (3.19), it is seen that
(3.26) £ (V-8 ) WW*E =0,
Differentiating (3.19) covariantly, we find
(ViSir) W™ +8;,ViW" = 2, W; +aViW; +{pu(h—p) }k&+p(h—p) Vi&;.

If we apply this by £¥W7 and take account of (1.10), (3.19), and (3.26),
then we get z;£* = 0. By definition, it follows that

(h = p) (€' — ') + (p— @) (e’ — pet*) =0,

which together with (3.22) implies that

ap€t = poyt?

because h — p # 0 on . From this and (3.25) we verify that
(8 — pa)az&® = 0 and hence a;&t = 0 by virtue of (3.5).

REMARK 1. We notice here that a # 0, p # 0 or p # « on £ because
of (3.5) and ¢ < 0.

From this fact it is seen that p;£' = 0 on €. If we take account of
(3.22), (3.23), and (3.24), then we see respectively that h:£¢ = 0, 0y W =
0 and 8;W* = 0. From the last relation and (3.5) it is seen that p;W? =
0. This completes the proof. O
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4. Real hypersurfaces satisfying LS =0 and R;S = SR¢

In the rest of this paper we shall suppose that M is a (2n — 1)-
dimensional real hypersurface in a complex hyperbolic space H,C and
that the Ricci tensor S satisfies LeS = 0 and R¢S = SR on M. Then
(3.21) is reduces to
(4.1) ' Va=pU - 3AU

because of Lemma 3.1 and the fact that p — h # 0 on 2, which together
with (3.15) and Lemma 3.1 gives

(4.2) aVp = (p* + c)U — pAU.
From the last two equations, it follows that
(4.3) uVu = (p* — pa + g)U + (3a — 2p) AU.

Substituting (4.1)—(4.3) into (3.16) and making use of Lemma 3.1, we
find

(p—@)AU = {(p— a)(p + 3a) + c}U.
Thus we have AU = AU, where we have the function A defined by

c
4.4 A= —
(4.4) p+3a+p_a

because of Remark 1. Thus (4.1) and (4.2) are respectively reduces to
(4.5) Va=(p—3\U, Vp=Ba—-A—2p)U
with the aid of Remark 1.

Since we have AU = AU, (3.18) and (3.20) turn out respectively to
be

(4.6) (2XA —p)h = 2%+ pX —p% — ¢,

(4.7) 2\ = p)(p— h)? = %c(2p —a—h-))
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On the other hand applying (2.2) by U*WJ and using (1.4), (3.17),
and (3.19), we find

HAp—h) = {AA =X = (h=p)(p— ) + T}(A = p+a),

which together with (4.6) implies that

(48)  wo-h)=(—p+a)p—h)(A-a)- e}

Using (3.5) and (4.4), it is seen that
(4.9) (p— )M +a-p) =4,
Thus « — p + X does not vanish on . Differentiation gives
(p—a)VA=8uVu+ (20— 20— X)(Vp—Va),
which (‘;onnecte(;l with (3.5) gives
(p—a)VA=(2a+2p—-N)Vp+ (20— 6a+ A\)Va.

Making use of (4.5), we have (3a—A—2p)Va = (p—3A)Vp. Therefore
the last equation turns out to be

(4.10) (p—a)VA=(2a+5\)Vp—(A+2p)Va.
If we take account of (4.8) and (4.9), then we obtain
(4.11) (p—h)(4X —3a—p) =3c

because A+a— p does not vanish on ), which together with (4.6) implies
that

(4.12) Ap—N)(4X —3a—p) =c(2A+ 3a — 2p).

Now, we prove
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LEMMA 4.1. Let M be a real hypersurface with L¢S = 0 and RS =
SRe in H,C. If g(S,£) = const., then Q is empty.

Proof. By (3.17) we have
a(h = p) + 7(2n = 3) = g(SE,€).

Thus we obtain a(h — p) = const. Hence if we differentiate (4.11), we
find
(4X = p)(Vp = Vh) + (p — h)(4VA — Vp) = 0,

which enable us to obtain
4aVA =aVp+ 4\ - p)Va
because p — h does not zero on 2. From this and (4.10) we verify that

(4.13) - 4pV A = (9a +20\)Vp — 9pVa. O

On the other hand, from (4.11) we have (p — h)(4\ — p) = 3a, where
we have put '

(4.14) alp—h)+c=a.
Hence we obtain
(4.15) 4\ = p + ba,

where the constant b is defined by (a — ¢)b = 3a. From this and (4.13)
it follows that

(4.16) (9 + 5ba + 4p)Vp = (9p + bp)Va,
which together with (4.5) yields

(4.17) (b +45)p® + (22b — 3b* + 33)pac + (5b® — 51b — 108)a® = 0.

Therefore p/a is a root of algebraic equation with constant coefficient
and hence p = ea for some constant € on 2, which together with (4.16)
gives

(4.18) (b+e)Va =0.
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If b+€ = 0, then (4.17) implies that (b+1)(b—3)(b+9) = 0 by virtue
of Remark 1. By definition and equations (4.9) and (4.15), it is clear
that (b+ 1)(b — 3) # 0. Thus we have b+ 9 = 0, which together with
(4.15) and (4.16) gives AVp = 0. Since A # 0 on {2 because of (4.9), it
follows that Vp = 0. From this and the second equation of (4.5) and
(4.15) we see that Va = 0. Consequently it is seen that a = const. Thus
(4.5) implies that p = 3\ and 3a — A — 2p = 0, and thus 7\ = 3« and
7p = 9c. From these and (4.12) we get 36a2 + 7c = 0. We also, using
(3.5) and (4.9), see that 54a2 +49c = 0, which produces a contradiction.
Therefore, it is seen that €2 is void. This completes the proof the lemma.

According to Lemma 4.1 and Theorem KM, we have

THEOREM 4.2. Let M be a real hypersurface satisfying L¢S = 0 and
R¢S = SR in a complex hyperbolic space H,C. If g(S¢,¢&) = const.,
then M is of type Ag, Ay or Ao, where S denotes the Ricci tensor of type
(1,1) on M, and L, the operator of the Lie derivative, R¢ the Jacobi
operator with respect to the structure vector &.

Proof. Because of Lemma 4.1, (2.5) gives S¢ = ¢S. Further we also
have from (1.4) SA = AS. Thus (2.1) turns out to be V¢S = 0. By
Theorem KM, we arrive at the conclusions. 0

References

[1] S. S. Ahn, S.-B. Lee and Y. J. Suh, On ruled real hypersurfaces in a complex
space form, Tsukuba J. Math. 17 (1993), 311-322.

[2] J. Berndt, Real hypersurfaces with constant principal curvatures in complex
hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.

[3] T.E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projec-
tive space, Trans. Amer. Math. Soc. 269 (1982), 481-499.

[4] J. T. Cho and U-H. Ki, Real hypersurfaces of a compler projective space in
terms of the Jacobi operators, Acta Math. Hungar. 80 (1998), 155-167.

[5] E.-H. Kang and U-H. Ki, On real hypersurfaces of d complex hyperbolic space,
Bull. Korean Math. Soc. 34 (1997), 173-184.

[6] U-H. Ki and N.-G. Kim, Ruled real hypersurfaces of a complex space form, Acta

. Math. Sinica 10 (1994), 401-409.

[7] U-H. Ki, N.-G. Kim, and S.-B. Lee, On certain real hypersurfaces of a complex
space form, J. Korean Math. Soc. 29 (1992), 63-77.

[8] U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math.
J. Okayama 32 (1990), 207-221.

[9] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective
space, Trans. Amer. Math. Soc. 296 (1986), 137-149.

, Some real hypersurfaces of a complex projective space, Saitama Math

J. 5 (1987), 1-5.




294

[11]
(12]
(13]
[14]
[15]

[16]

(17]

(18]

Seong Soo Ahn

M. Kimura and S. Maeda, Lie derivatives on real hypersurfaces in a complex
projective space, Czechoslovak Math. J. 45 (1995), 135-148.

, On real hypersurfaces of a complex projective space, Math. Z. 202
(1989), 299-311.

S. Maeda, Ricci tensors of real hypersurfaces in a complex projective space,
Proc. Amer. Math. Soc. 122 (1994), 1229-1235.

S. Montiel, Real hypersurfaces of a compler hyperbolic space, J. Math. Soc.
Japan 37 (1985), 515-535.

S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic
space, Geom. Dedicata 20 (1986), 245-261.

R. Niebergal and P. J. Ryan, Real hypersurfaces in complez space forms, in Tight
and Taut submanifolds, Cambridge Univ. Press(T.E. Cecil and S.S. Chern, eds.)
(1998), 233-305.

R. Takagi, On homogeneous real hypersurfaces of a compler projective space,
Osaka J. Math. 10 (1973), 495-506.

, Real hypersurfaces in a complex projective space with constant principal
curvatures I, II, J. Math. Soc. Japan (1975), 43-53, 507-516.

DEPARTMENT OF COMPUTER, DONGSHIN UNIVERSITY, NAJU 520-714, KOREA
E-mail: jedream@korea.com



