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A NOTE ON THE LEFSCHETZ FIXED POINT
THEOREM FOR ADMISSIBLE SPACES

Ravi P. AGARWAL AND DoNAL O’REGAN

ABSTRACT. The Lefschetz fixed point theorem is extended to com-
pact continuous maps defined on an admissible subset of a Hausdorff
topological space.

1. Introduction

In this paper we present new Lefschetz fixed point theorems for single
valued continuous compact maps f : X — X where X is an admissible
(to be defined later) subset of a Hausdorff topological space. Our defi-
nition of admissibility will include N ES(compact) spaces so our results
improve those in the literature; see [2] and the references therein.

For the remainder of this section we present some definitions and
known results which will be needed throughout this paper. Consider
vector spaces over a field K. Let E be a vector space and f: F — E an
endomorphism. Now let N(f) = {z € E : f(™(z) = 0 for some n} where
£ is the nt* iterate of f, and let E = E\ N(f). Since f(N(f)) C N(f)
we have the induced endomorphism f : E — E. We call f admissible
if dim F < oo; for such f we define the generalized trace Tr(f) of f by

putting Tr(f) = tr(f) where tr stands for the ordinary trace.

DEeFINITION 1.1. Let f = {f;} : E — E be an endomorphism of
degree zero of a graded vector space E = {E;}. We call f the Leray
endomorphism if (i) all f, are admissible and (ii) almost all E, are trivial.
For such f we define the generalized Lefschetz number A(f) by

A(f) =D (=1 Tr(fy).
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Let H be the singular homology functor (with coefficients in the field
K) from the category of topological spaces and continuous maps to
the category of graded vector spaces and linear maps of degree zero.
Thus H(X) = {Hy(X)} is a graded vector space, Hy(X) being the
g-dimensional singular homology group of X. For a continuous map
f X =Y, H(f) is the induced linear map f. = {f,}, where f; :
Hy(X) — Hy(Y).

DEFINITION 1.2. A continuous map f : X — X is called a Lefschetz
map provided f, : H(X) — H(X) is a Leray endomorphism. For such
f we define the Lefschetz number A(f) of f by putting A(f) = A(fy).
We know if f and g are homotopic (f ~ g) and if f is a Lefschetz map,
then g is a Lefschetz map with A(g) = A(f).

DEFINITION 1.3. A space X is said to be a Lefschetz space provided
any continuous map f : X — X is a Lefschetz map and A(f) # 0 implies
f has a fixed point.

By a space we mean a Hausdorff topological space. Let @@ be a class
of topological spaces. A space Y is a neighborhood extension space for
Q (written Y € NES(Q)) if VX € Q, VK C X closed in X, and for any
continuous function fy : K — Y, there exists a continuous extension

f:U —Y of fyover a neighborhood U of K in X.

The following result was established in [2].

THEOREM 1.1. Every N ES(compact) is a Lefschetz space.

2. Fixed point theory

We begin this section with a simple extension of Theorem 1.1. Let
X be a subset of a Hausdorff topological space. Then X is said to be
Borsuk NES(compact) if X is dominated by a NES(compact) space
Y i.e. there exists a subset Y of a Hausdorff topological space with
Y € NES(compact), and continuous maps r: Y — X, s: X — Y with
rs=1x.

THEOREM 2.1. Let X be a subset of a Hausdorff topological space
and assume X is Borsuk NES(compact). Then X is a Lefschetz space.

Proof. Let f : X — X be a continuous compact map. We know
there exists Y, » and s as described above. Notice sfr:Y — Y isa
continuous compact map. From Theorem 1.1 we know A(s fr) is well
defined. Also [3, Lemma 3] (or [2, Example 3.4]) guarantees that A(f)
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is well defined and A(f) = A(sfr). Next assume A(f) # 0. Then
A(sfr) # 0 so Theorem 1.1 guarantees that there exists z € Y with
x = s fr(z). Let w=r(z) and notice z = s f(w) so w = rs f(w). This
together with r s = 1x yields w = f(w), so the proof is complete. O

For our next result we assume X is a subset of a Hausdorff topological
vector space . We say X is NES admissible if for every compact subset
K of X and every neighborhood V of zero there exists a continuous
function hy : K — X such that

(i) z—hy(z) eV forall z € K;
(i) hy(K) is contained in a subset C of X with C € NES(compact);
(iii) hy and 7 : K — X are homotopic.

THEOREM 2.2. Let E be a Hausdorff topological vector space and let
X C E be NES admissible. Then X is a Lefschetz space.

Proof. Let f: X — X be a continuous compact map. Next let N be
a fundamental system of neighborhoods of the origin 0 in E and V € N.
Let K = f(X). Now there exists a continuous function hy : K — X
and a C C X with C € NES(compact), z — hy(z) € V for all z € K,
hv(K) C C and hy ~ i. Notice also that hy f : X — X is a continuous
compact map with hy f ~ f. Let gy = hy flc so gv : C — C is
a continuous compact map. From Theorem 1.1 we know that gy is a
Lefschetz map so in particular A(gy) is well defined. Also [2, Lemma
3.2 (see Example 3.3)] implies that hy f : X — X is a Lefschetz map
with A(hy f) = A(gy). Now since hy f ~ f we have that f: X — X is
a Lefschetz map with A(f) = A(hy f).

Next assume A(f) # 0. Then A(hy f) # 0 so Theorem 1.1 guarantees
that there exists xy € C with zyv = hy(f(zyv)). Now since yy =
f(zv) € K then from (i) above we have yy — hy(yv) € Vsoyy —zv €
V. Now since K = F(X) is compact we may assume without loss of
generality that there exists  with yy — x. Also since yy — 2y € V we
have zy — z. This together with yy = f(xy) and the continuity of f
implies x = f(x), and the proof is complete. O

REMARK 2.1. A similar result could be obtained if C € NES (com-
pact) in (ii) above is replaced by C is Borsuk N ES(compact); we only
need replace Theorem 1.1 with Theorem 2.1 in the proof of Theorem 2.2.

Let X be a subset of a Hausdorff topological space. Then X is said to
be Borsuk NES admissible if X is dominated by a NES admissible space
Y ie., there exists a Hausdorff topological vector space E, aY C F
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which is NES admissible, and continuous maps r: ¥ - X, s: X - Y
with rs = 1x.

Essentially the same reasoning as in Theorem 2.1 establishes the fol-
lowing result.

THEOREM 2.3. Let X be a subset of a Hausdorff topological space
and assume X is Borsuk NES admissible. Then X is a Lefschetz space.

Let X be a subset of a Hausdorff topological vector space E. Let V be
a neighborhood of the origin 0 in E. X is said to be NES admissible V-
dominated if there exists a NES admissible space Xy and two continuous
functions ry : Xy — X, sy : X — Xy such that z — ry sy(z) € V for
all x € X and also that ry sy and ¢ : X — X are homotopic. X is
said to be almost NES admissible dominated if X is NES admissible
V-dominated for every neighborhood V of the origin 0 in E.

THEOREM 2.4. Let X be a subset of a Hausdorff topological vector
space E. Also assume X is almost NES admissible dominated. Then X
is a Lefschetz space.

Proof. Let f : X — X be a continuous compact map and let N
be a fundamental system of neighborhoods of the origin 0 in £ and
V e N. Let K = f(X). Now there exists a NES admissible space
Xy and two continuous functions ry : Xy — X, sy : X — Xy such
that z — ry sy(x) € V for all z € X and ry sy ~ i. Notice sy fry :
Xv — Xy is a continuous compact map and from Theorem 2.2 we
know that A(sy fry) is well defined. Also [2, Lemma 3.2] guarantees
that A(f ry sy) is well defined and A(fry sy) = A(sy fry). Also since
ry sy ~ ¢ we have immediately that fry sy ~ f. Thus f is a Lefschetz
map and A(f) = A(fry sv) = A(sy fry).

Now assume A(f) # 0. Then A(sy fry) # 0 so Theorem 2.2 guar-
antees that there exists zy € Xy with zv = sy fry(zy). Let yy =
rv(zv) and notice yy = rv sy f(yv). Since z — ry sy(x) € V for all
z € X we have

flyv) —rvsy flyv) € V.
Thus f(yv) —yv € V. Let wy = f(yy) € K. Now since K = F(X) is
compact we may assume without loss of generality that there exists a x
with wy — z. Also since wy —yy € V we have yyy — x. These together
with wy = f(yv) and the continuity of f implies z = f(x). O

Next we extend Theorem 2.2 to the case of Hausdorff topological
spaces. First we gather together some well known preliminaries. For a
subset K of a topological space X, we denote by Covx(K) the set of all
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coverings of K by open sets of X (usually we write Cov(K) = Covx (K)).
Given amap f: X — X and a € Cov(X), a point z € X is said to be
an o-fixed point of f if there exists a member U € « such that x € U
and f(z) € U. Given twomaps f, g: X - Y and a € Cov(Y), f and g
are said to be a-close if for any = € X there exists U, € «, f(z) € U,
and g(z) € U,.

The following result can be found in [2, p.272].

THEOREM 2.5. Let X be a topological space and f : X — X a
continuous map. Suppose there exists a cofinal family of coverings 6 C
Covx(f(X)) such that f has an a-fixed point for every a € 6. Then f
has a fixed point.

REMARK 2.2. From Theorem 2.5 in proving the existence of fixed
points in uniform spaces for continuous compact maps it suffices [1,
p-298] to prove the existence of approximate fixed points (since open
covers of a compact set A admit refinements of the form {U[z] : z € A}
where U is a member of the uniformity [4, p.199] so such refinements
form a cofinal family of open covers). For convenience in this paper we
will apply Theorem 2.5 only when the space is uniform.

Let X be a subset of a Hausdorff topological space and let X be a
uniform space. Then X is said to be Schauder NES admissible if for
every compact subset K of X and every open covering o € Covx(K)
there exists a continuous function 7, : K — X and a subset C of X
with C € NES(compact) and

(1) mq and i : K < X are a-close;

(i1) mo(K) is contained in C;
(ili) 7o and ¢ : K — X are homotopic.

THEOREM 2.6. Let X be a subset of a Hausdorff topological space and
let X be a uniform space. Also suppose X is Schauder NES admissible.
Then X is a Lefschetz space.

Proof. Let f: X — X be a continuous compact map, K = f(X) and
a € Covx(K). Then there exists a continuous function 7y : K — X, a
subset C of X with C € NES(compact), 7o(K) CC, mpandi: K — X
are a-close and 7, ~ i. Let fo, = 7o f and notice f, : X — X is
a continuous compact map with f, ~ f. Let go = fu|c and note
go : C — C is a continuous compact map. From Theorem 1.1 we know
that g, is a Lefschetz map and also from [2, Lemma 3.2] we have that
fa : X — X is a Lefschetz map with A(fy) = A(ga). Next since fo, ~ f
we have that f: X — X is a Lefschetz map with A(f) = A(fa).
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Next assume A(f) # 0. Then A(fy) # 0 so Theorem 1.1 guarantees
that there exists z € C with « = 7, f(z). Since 7, and ¢ are a-close
there exists U € a with o f(z) = z € U and f(z) € U. Thus f
has an a-fixed point. The result now follows from Theorem 2.5 (with
Remark 2.2). O

REMARK 2.3. As in Remark 2.1 it is possible to replace C €¢ NES
(compact) in (ii) above with C Borsuk N ES(compact).

Let X be a subset of a Hausdorff topological space. Then X is said
to be Borsuk Schauder NES admissible if X is dominated by a uniform
space Y which is Schauder NES admissible i.e. there exists a uniform
space Y which is Schauder NES admissible, and continuous maps r :
Y —-X,s: X —>Y withrs=1x.

Essentially the same reasoning as in Theorem 2.1 establishes the fol-
lowing result.

THEOREM 2.7. Let X be a subset of a Hausdorff topological space and
assume X is Borsuk Schauder NES admissible. Then X is a Lefschetz
space.

Let X be a Hausdorff topological space and let a € Cov(X). X is said
to be Schauder NES admissible a-dominated if there exists a Schauder
NES admissible space X, and two continuous functions r4 : X, — X,
Sa : X — X such that 74,84 : X — X and i : X — X are a-close and
also that 74 84 ~ 4. X is said to be almost Schauder NES admissible
dominated if X is Schauder NES admissible a-dominated for every « €
Cov(X).

Our next result was motivated by ideas in [2].

THEOREM 2.8. Let X be a uniform space and let X be almost
Schauder NES admissible dominated. Then X is a Lefschetz space.

Proof. Let f : X — X be a continuous compact map, K = f(X),
and a € Covux(K). Now there exists a Schauder NES admissible space
Xo and two continuous functions 7, : Xo — X, 54 : X — X, such that
raSa : X — X and i : X — X are a-close and also that ro s, ~ 1.
Notice sq fra : Xo — X4 is a continuous compact map and from The-
orem 2.6 we know that A(sq fry) is well defined. Also [2, Lemma 3.2]
guarantees that A(f 7y sq) is well defined and A(f rq o) = A(Sq f7a)-
Since r4 8o ~ i we have immediately that frgse ~ f. Thus f is a
Lefschetz map and A(f) = A(fra sa) = A(sa fTa)-

Now assume A(f) # 0. Then A(sq f 7o) # 0 so Theorem 2.6 guaran-
tees that there exists zq € Xo with 2o = 54 f70(2a). Let yo = ro(za)
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and notice Yo = 7o Sq f(¥a). Now since ¢ and r, s, are a-close there
exists Uy € a with f(ys) € Uy and r4 8q f(Ya) € Uy 1. f(ya) € Uy
and yo € U,. In particular f has an a-fixed point. The result now
follows from Theorem 2.5 (with Remark 2.2). d

References

[1] H. Ben-El-Mechaiekh, Spaces and maps approrimation and fized points, J. Com-
put. Appl. Math. 113 (2000), 283-308.

[2] G. Fournier and A. Granas, The Lefschetz fized point theorem for some classes of
non-metrizable spaces, J. Math. Pures Appl. 52 (1973), 271-284.

[3] A. Granas, Generalizing the Hopf-Lefschetz fized point theorem for non-compact
ANR’s, Symp. on Infinite Dimensional Topology (Louisiana State Univ., Baton
Rouge, La. 1967), Ann. of Math. Stud. 1972, no. 69. 119-130.

[4] J. L. Kelley, General Topology, D. Van Nostrand Reinhold Co. New York, 1955.

Ravi P. AGARWAL, DEPARTMENT OF MATHEMATICAL SCIENCES, FLORIDA INSTI-
TUTE OF TECHNOLOGY, MELBOURNE, FLORIDA 32901, U.S.A
E-mail: agarwal@fit.edu

DoNAL O’REGAN, DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF IRE-
LAND, GALWAY, IRELAND
E-mail: donal.oregan@nui.galway.ie



