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WEAK DIMENSION AND CHAIN-WEAK
DIMENSION OF ORDERED SETS

JoNG YouL KiM AND JEH GWON LEE

ABSTRACT. In this paper, we define the weak dimension and the
chain-weak dimension of an ordered set by using weak orders and
chain-weak orders, respectively, as realizers. First, we prove that
if P is not a weak order, then the weak dimension of P is the
same as the dimension of P. Next, we determine the chain-weak
dimension of the product of k-element chains. Finally, we prove
some properties of chain-weak dimension which hold for dimension.

1. Introduction

Let P be an ordered set. Another ordered set ) on the same under-
lying set as P is called an extension of P if x <y in () whenever x <y
in P. Furthermore, we say that an extension is linear if it is a linear
order. A family R of extensions of P is called a realizer of P if x < y in
P whenever x < y in L for all L € ®. The dimension of P, denoted by
dim(P), is the least cardinality of a family R of linear extensions of P
such that R is a realizer of P. Equivalently, the dimension of an ordered
set P is the least cardinality of chains whose product embeds P.

If an extension of an ordered set P is an interval order [tree|, then
it is called an interval extension [tree extension] of P. Replacing linear
extensions in the definition of dimension by interval extensions, the in-
terval dimension of an ordered set was first introduced by Trotter and
many authors studied this problem([3], [4], [8]). Similarly, Behrendt[2]
defined tree dimension by using tree extensions.

In this paper, we define the weak dimension and the chain-weak di-
mension of ordered sets by using weak orders and chain-weak orders, re-
spectively, as realizers. First, we prove that if P is not a weak order, then
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the weak dimension of P is the same as the dimension of P. Next, we
determine the chain-weak dimension of the product of k-element chains.
Finally, we prove some properties of chain-weak dimension which hold
similarly for dimension. It is presumed throughout that every ordered
set is finite.

2. Weak dimension

Let P and @ be two disjoint ordered sets. The disjoint sum P + Q
of P and @) is the ordered set on P U @ such that z < y if and only if
z<yin Porz <yinQ. The linear sum P®Q of P and () is obtained
from P + @ by adding the new relations x < y for all z € P and y € Q.
An ordered set P is called a weak order if P can be represented as the
linear sum of antichains, that is, P = A; ® Ao ® --- ® A, where A; is
an antichain for ¢ = 1,2,--- ,n, and we call each A; a level of P. We
see that every weak order has dimension at most two and its realizer
consisting of linear extensions can be easily obtained. Now it is natural
to consider a new parameter to describe ordered sets by weak orders.
For an ordered set P, an extension of P is said to be weak if it is a
weak order and then the weak dimension of P, denoted by wdim(P), is
defined to be the least integer ¢ for which there exist t weak extensions
Wi, Ws, -+, W; which form a realizer of P,

If z,y are incomparable in P, we denote z || y and let Inc(P) =
{(z,y) | z || y in P}. We say that an extension L of P (not necessarily
a linear extension) reverses (z,y) € Inc(P)ify<zinLorz || yin L
and that a family R of extensions of P reverses a set S C Inc(P) if each
(z,y) € S is reversed by at least one L € R. Observe that a family ® of
extensions of P is a realizer if and only if R reverses Inc(P).

THEOREM 2.1. If P is not a weak order, then dim(P) = wdim(P).

Proof. First, we prove a special case in the following claim.

CramM. If wdim(P) = 2, then dim(P) = 2.

Let W7 and W5 be weak extensions which form a realizer of P. Then
Wi=A410A4:6 - ©A, We=B1O0B& - OBy,

where A;, B; are antichains for ¢ = 1,2,--- ,m and j = 1,2,---,n.
We will construct linear extensions L; and Lo of P from W7 and Wy
such that {L;, Ly} is a realizer of P. For each ¢ = 1,2,---,m and
j=1,2,--- ,n,let C;; be any linear extension of A;NB;. Let C; = C;n, @
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- @BC;DC;1. Then C; is a linear extension of 4; andso L1 = C19Cy @
-+ -@®Cpy is a linear extension of P. Similarly, foreachi=1,2,--- ,m and
j=12,---,n,let Dij be the dual OfCij and Dj = ijEB- . ‘@DQj@Dlj.
Then Lo =D1 ® Dy @ --- ® D, is a linear extension of P.

Now we show that {L;1, Lo} is a realizer of P. It is enough to show
that, for any (z,y) € Inc(P), y < z in Lj or y < z in Ls. To prove this,
we have the following four cases to consider.

Case 1. y<zin Wy or y < x in Wa.

We easily see that y < z in Ly or 4y < z in Ly from the construction
of L1 and L2.

CasE 2. z ||y in Wy and & < y in Wy,

Clearly, x and y are contained in the same level of W and we denote
this level by A,. Let x € B; and y € By for some s,t =1,2,--- ,n. Then
s < t, whence y < « in C,. Hence y < x in L;.

CASE 3. z <yin Wi and z || y in Wa.

It is similar to Case 2.

CASE 4. z ||y in W; and 2z || y in W,

In this case, we have z,y € As and z,y € B, for some s and ¢t. Hence
z,y € Csy N Dg. Since Dy, is the dual of Cy, we have y < z in Ly or
y < z in Lo.

To complete the proof, let wdim(P) =t > 2. Then there are weak
orders Wy, Wa, - - -, Wy such that {Wy, Wy, - - -, W;} is a realizer of P. We
will construct a linear extension L; of P from each W;, i = 1,2,--- 1.
Let W; = Aj @ A2 ® --- ® Aip,, where A;; is an antichain for j =
1,2,--- ,n;. We first obtain Ly and L, from Wy and W5 as in the above
claim. We then define the new order Agj on Az; (j =1,2,--- ,n3) which
is induced by the dual of Ly. Then L3 = Ay @ A3, ®- - -® A3, is a linear
extension of P. Continuing the method, we obtain a linear extension L;
from L;_1 for 4 <i <.

-Now we show that {Li,,Ls,---, L} is a realizer of P. Let (z,y) €
Inc(P). Then y <z or z || y in some W;. Let k =min{i |y <z or z ||
y in W; }. Such a k exists, since otherwise {W7, Wa,--- , W;} is not a
realizer of P. If k < 2 then we know that y < z in L; or Ly. If k > 3,
then z < y in Li_; and y < « in Ly from the construction of Lz. Hence,
{L1, Ly, ---, Ly } is a realizer of P and so dim(P) < wdim(P). Since
dim(P) > wdim(P), we conclude that dim(P) = wdim(P). O
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Theorem 2.1 shows that in order to determine the dimension of an
ordered set, we may take its weak extensions instead of linear extensions
if it is not a weak order. In general, a weak extension reverses more
incomparable pairs than a linear extension does. Hence weak extensions
may be more effective than linear extensions to determine the dimension
of an ordered set. :

3. Chain-weak dimension

In this section, we introduce a new parameter of an ordered set which
generalizes the concept of weak dimension. An ordered set P is called a
chain-weak order if it can be represented by a linear sum of disjoint sum
of chains, that is, P = A1 ® Ao ® --- ® A, where A; is a disjoint sum
of chains for each ¢ = 1,2,--- ,n, and again we call each A; a level of
P. We see that every chain-weak order has dimension at most two and
its linear extensions for a realizer can be easily obtained. An extension
of an ordered set P is said to be chain-weak if it is a chain-weak order.
Then the chain-weak dimension of P, denoted by cwdim(P), is defined
to be the least integer t for which there exist ¢ chain-weak extensions
Wi, Ws, .-+, W; of P which form a realizer of P.

ProproSITION 3.1. Let P be an ordered set. Then P is a chain-weak
order if and only if P does not contain any of the following ordered sets
as an induced suborder.

DA

FIGURE 1

Proof. Let P be a chain-weak order, that is, P=A; ® A, & --- D 4,
and A; is a disjoint sum of chains for each i = 1,2,--- ,n. Suppose that
P contains one of (a), (b), and (c) as an induced suborder. If z || y in
P then x and y belong to the same level. Hence one of (a), (b), and
(c) must be contained in the same level. But each of (a), (b), and (c)
cannot be contained in a disjoint sum of chains as an induced suborder.
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Conversely, suppose that P be an ordered set that does not contain
any one of (a), (b), (¢) as an induced suborder. To prove that P is a
chain-weak order, we use an induction on |P}. It is well known that P
does not contains (a) as an induced suborder if and only if P is series-
parallel, that is, P is constructed from singletons by using only + and .
Hence P = P+ P" or P = P'@® P”, where P/ and P” are nonempty. By
induction hypothesis, P’ and P” are chain-weak orders. If P = P' @ P”,
then it is clearly a chain-weak order. Suppose that P = P/ + P"” and P’
contains one of the following ordered sets as an induced suborder:

AVARVAN

Then P = P’ + P” contains (b) or (c) as an induced suborder. Thus P’
is a disjoint sum of chains. Similarly, P” is also a disjoint sum of chains.
Hence P = P’ + P” is a chain-weak order. O

For an ordered set P, we call (z,y) € Inc(P) a critical pair in P if
z < z implies 2 < y and y < w implies £ < w in P. Then we denote the
set of all critical pairs by Crit(P). In [6], Rabinovitch and Rival proved
that a family R of linear extensions of P is a realizer of P if and only if
R reverses Crit(P). By using the same method, we prove the following
lemma.

LEMMA 3.2. Let P bé an ordered set and ® be a family of chain-
weak extensions of P. Then R is a realizer of P if and only if R reverses

Crit(P).

Proof. 1t is clear that if R is a realizer of P then R reverses Crit(P).
Conversely, suppose that R reverses Crit(P). Let (u,v) € Inc(P). We
show that v < w or u || v in some W € R. Let v/ be a maximal element
with the property that v’ < u and v/ £ v and similarly let v" be a
minimal element with the property that v < v/ and ' £ v’. Then
(u',v") € Crit(P) and so v < v/ or ¢/ || v/ insome W € R. If u < v in
W, then v’ < u < v <v' in W, which is a contradiction. Hence, v < u
orulvin W. O

Now we determine the chain-weak dimension of some familiar ordered
sets. First, we find an upper bound of the chain-weak dimension of
generalized crowns. Trotter(7] defined the generalized croum SE, for
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integers n > 3 and k > 0, to be the bipartite ordered set with min(S¥) =
{a1,ag, - ,anyk}, max(S¥) = {by,b2, -+ ,bpsx}. Fori=1,2,--- ntk,
b; and a; are incomparable in Sﬁ for j = 4,9+ 1,--- i+ k and b; > a;
inSkforj=i+k+1,i+k+2,---,i+k+n— 1. Here, subscripts are
to be interpreted modulo n + k. For example, see Figure 2 for S3.

b1 bz b3 b4 b5 b6

FIGURE 2. S7

Let A = min(SF) and B = max(SF). Observe that (a,b) € Crit(SF)
if and only if a € A, b€ B and a || b in Sk. We consider the two chain-
weak extensions Wi and W5 of the generalized crowns S,,’i in Figure 3.
Let A(b;) = {a € A|a | b; in S*¥}. Then we can easily show that for
a€ Ab;)and i =n+k,1,2,---  k+ 3,

a||b,-orb,~<ainW1ﬂW2.

Let Crit(b;) = {(a,b;) € Ax B | a || b; in S£}. Then W; and W, reverse
Crit(b;) fori=n+k,1,2, -, k-+3. Since | max(S¥)| = n+k&, we have
the following proposition.

PROPOSITION 3.3. For the generalized crown S¥,

. 2(n+ k)
For k =0, S0 = S, is the n-dimensional standard ordered set and so
cwdim(S,) < [%] by Proposition 3.3. Since cwdim(P) > [dl—”;(ﬂ-‘ for
any ordered set P, we have the following.

COROLLARY 3.4. For an integer n > 3,
n

cwdim(S,) = [a-l .
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cwdim(S¥) < 2 by Proposition 3.3. Since S¥ is not a chain-weak order,
we have the following.

COROLLARY 3.5. For k> 1 and n =3 or 4,
ewdim(S¥) = 2.

Next, we shall determine the chain-weak dimension of k™, the n-fold
product of k-element chains. To do this, we define S for n > 3 with
the ground set X = {a;, a}, b;, b | i = 1,2,--- ,n} whose order is the
transitive closure of the following order relations:
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(1) {ai, b; | n=1,2,--- ,n} is the n-dimensional standard ordered
set. '
(2) af<ajand b <, fori=1,2,---,n.

(3) a, < ¥, fori=1,2,---,n.
For example, the following is a diagram for Sz.

FIGURE 4. S5

LeEMMA 3.6. For an integer n > 3,
cwdim(S}) = n.

Proof. To begin with, we divide the set of all critical pairs of S} into
two subsets:

A:{(a17b2)|7’:1’ >n}7 B:{(a;,bl)|z=1, ,’I’l}.

Let W be any chain-weak extension of S;;. Then we will show that if W
reverses two critical pairs in A, then W cannot reverse any critical pairs
in B and vice versa.

We may assume that W reverses two critical pairs, (a1,b}), (az, b))
in A. Now we have the four cases to consider.

CASE 1. b} < a1 and by < az in W.

Since a2 < b} and a1 < by in S}, we have a2 < by in W, but it is a
contradiction.

CASE 2. a1 || b] and b < ag in W.

Then a; and b] lie in the same level L of W. Since a1 < b5 in S}, b)
lies in the level L or above the level L. If ¥, lies above L, then ay lies
above L because by < ag in W. Since az < b} in S}, b} lies above L,
which is a contradiction. Hence b, € L. For i =1,2,--- ,n, a; lies below
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the level L, because a; < b} and a; < b}, in 5. Since by < az in W, a1
and ag lie in L or above L. Hence b; lies in L or above L. Therefore, W
cannot reverse any critical pairs in B

CASE 3. bj <aj and ag || b} in W.

This case can be treated by a similar method to Case 2.

CASE 4. a1 || b and ag || b, in W.

In this case, a; and b] lie in one level, and ay and b5 may lie in
another level. But, since a1 < by < b, and ag < by < b} in S}, all these
six elements lie in the same level L of W. Then, fori¢ =1,2,--- ,n, a] lies
below the level L because a < b] and a] < by in Si. For j = 3,4,---n,
b; lies above the level L because a1 < b; and az < b; in S;,. Hence W
cannot reverse any critical pair of B.

Similarly, if W reverses two critical pairs in B then W cannot reverse
any critical pairs in A. Consequently, W reverses at most two critical
pairs of S;. Hence, cwdim(S};) > n. Since cwdim(S};) < dim(S}) = n,
we finally conclude that cwdim(S}}) = n.

Let @ be a lattice. An element x € Q) is meet irreducible if t =y A 2
implies that z = y or z = 2. Dually, an element x € @} is join irreducible
if £ = yV z implies that £ = y or x = 2. An element z € Q \ {0,1}
is irreducible if it is meet irreducible or join irreducible. We denote the
set of irreducible elements of @ by Irr(Q). It is well known that (z,y) €
Crit(Q) implies {z, y } C Irr(Q) so that @ has the same dimension as
the induced suborder of @) determined by Irr(Q). Then it follows from
Lemma 3.2 that cwdim(Q) = cwdim(Irr(Q)). Since S, = Irr(2") and
Sy = Irr(3™), we obtain the following theorem from Corollary 3.4 and
Lemma 3.6.

THEOREM 3.7. For a natural number k > 2 and a natural number n,

2] if k=2

owdim(k”™) = {n if k>3

In the rest of this paper, we prove some simple properties of chain-
weak dimension which hold for dimension. Recall that the dimension
of an ordered set P is also the least number n such that P is order-
isomorphic to an induced suborder of the product of n chains. In [2],
Behrendt shows that a similar result holds for tree dimension. Here we
show that it also holds for chain-weak dimension.
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LEMMA 3.8. Let P be the product of a family (P;);c; of chain-weak
orders. Then cwdim(P) < |I|.

Proof. For each i € I, let Y; := [];cp\(;y 5 and let Y be a linear
extension of Y;. For x € P and i € I, denote by z* the image of x in Y;
under the canonical projection P — Y; and by x; the image of = in P,
under the canonical projection P — P;. Then we define an extension
Qiof Pbyz<yinQ; & z; <y in P,orz; =y and ' < y*inY].
Then Q; is the lexicographic sum of Y/ on P;. Since Y/ is linear, Q; is a
chain-weak order. If z < y in P, then 2* < ¢ in Y; and z; < y; in P; and
hence z* < ¢ in Y/ and z; < y; in P;, that is, z < y in @Q;. Therefore,
Q; is a chain-weak extension of P.

Let (z,y) € Inc(P). Then, z; and y; are incomparable in F; for some
i € I, or there exist 4, 7 € I such that z; < y; in P; and y; < z; in
P;. In the first case, by definition of @);,  and y are incomparable in
Q:. In the second case we have x < y in @; and y < z in Q;. Hence,
{Qi | i € I} is a realizer of P, that is, cwdim(P) < |I]. O

PROPOSITION 3.9. Let P be an ordered set. Then the chain-weak
dimension of P is the least cardinal number n such that P is isomorphic
to an induced suborder of the product of n chain-weak orders.

Proof. By Lemma, 3.8, the product of n chain-weak orders has chain-
weak dimension of at most n. Now we show that every ordered set of
chain-weak dimension n can be embedded into a product of n chain-
weak orders. Let a family (P;);er of chain-weak orders be a realizer of
P with |I| = n. Let @ = [[;c; P; and let ¢ be the map from P into Q
defined by (¢(z)); = = for all i € I. Thus for z, y € P, ¢(x) < ¢(y) in
Qifandonly if x < yin P; for alli € I if and only if z < y in P. Hence
¢ is an embedding from P into Q. O

Baker[1] showed that for an ordered set P, dim(P) = dim(C(P)),
where C(P) is the MacNeille completion of P, that is, the smallest
lattice containing P as an induced suborder. In [4], it was proved that
a similar result holds for interval dimension. We have the following
proposition for chain-weak dimension.

ProrosITION 3.10. The chain-weak dimension of an ordered set and
its MacNeille completion are the same.

Proof. Let P be an ordered set of chain-weak dimension k. By Propo-
sition 3.9, P can be embedded into a product of k chain-weak orders,
Qb QZ) T Qk)~ For each i = 172,"' akv let Ql = L11®L12®@th17
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where L;j is alevel of Q; (j = 1,2, ,t;). Let Q] be the chain-weak or-
der obtained from @; by inserting elements 0,1 and z;; (j = 1,2, - - t;—1)
such that @} = {0}® Ly ®{zn } D Lio®{Tin}®- - D {zir,_, } D Lir,®{1}.
Then Q) is a lattice and P embeds into [[¥_; Q. Since [T*_, @/ is a lat-
tice and C(P) is the least lattice containing P as an induced suborder,
C(P) is embedded into Hf=1 Q;. Hence, cwdim(C(P)) < k. O

Hiraguchi[5] showed that if P is an ordered set with |P| > 2 and if
P\ {z} is an induced suborder of P obtained by removing an element x
from P, then dim(P) < dim(P \ {z}) + 1. Similarly, the following holds
for chain-weak dimension.

PROPOSITION 3.11. Let P be an ordered set with |P| > 2 and let
x € P. Then
cwdim(P) < cwdim(P \ {z}) + 1.

Proof. Let Q = P\ {z}, cwdim(Q) = t and {W1,Ws,--- ,W;} be a
family of chain-weak orders which realizes Q. Set D(z) = {y e Ply <=z
in P} and U(z) = {y € P|y >z in P}. Foreachi = 1,2,--- ,t, we
shall construct a chain-weak extension W/ of P by adding = to W;. Let
L; be the level of W; containing a maximal element of D(z) in W;.
Then L; contains no element of U(z). If W/ is obtained from W, by
replacing L; by L; @ {«}, then clearly W/ is a chain-weak extension of
P. To find the remaining one for a realizer of P, let I(z) be the set
of all elements incomparable to z in P and let L, M and N be any
linear extensions of I(x), D(z) and U(x), respectively. Then W/ , =
M®(L+{z})®N is a chain-weak extension of P. Now it is easy to check
that {W7,W3,--- ,W{ 1} is a chain-weak realizer of P, as desired. [
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