n-WEAK AMENABILITY AND STRONG DOUBLE LIMIT PROPERTY

A. R. MEDGHALCHI AND T. YAZDANPANAH

ABSTRACT. Let \mathcal{A} be a Banach algebra, we say that \mathcal{A} has the strongly double limit property (SDLP) if for each bounded net (a_{α}) in \mathcal{A} and each bounded net (a_{β}^*) in \mathcal{A}^* , $\lim_{\alpha} \lim_{\beta} \left\langle a_{\alpha}, a_{\beta}^* \right\rangle = \lim_{\beta} \lim_{\alpha} \left\langle a_{\alpha}, a_{\beta}^* \right\rangle$ whenever both iterated limits exist. In this paper among other results we show that if \mathcal{A} has the SDLP and \mathcal{A}^{**} is (n-2)-weakly amenable, then \mathcal{A} is n-weakly amenable. In particular, it is shown that if \mathcal{A}^{**} is weakly amenable and \mathcal{A} has the SDLP, then \mathcal{A} is weakly amenable.

1. Introduction.

Let \mathcal{A} be a Banach algebra, X be a Banach \mathcal{A} -bimodule. Then X^* is a Banach \mathcal{A} -bimodule under the actions:

$$\langle x, ax^* \rangle = \langle xa, x^* \rangle,$$

 $\langle x, x^*a \rangle = \langle ax, x^* \rangle, \ (a \in \mathcal{A}, x \in X, x^* \in X^*).$

A derivation $D: \mathcal{A} \longrightarrow X$ is a (bounded) linear map such that

$$D(ab) = D(a)b + aD(b), (a, b \in \mathcal{A}).$$

For each $x \in X$, $\delta_x(a) = ax - xa$ is a derivation, such derivation is called inner. The first cohomology group $H^1(\mathcal{A},X)$ is the quotient of the space of derivations by the inner derivations; \mathcal{A} is called contractible if, for every Banach \mathcal{A} -bimodule X, $H^1(\mathcal{A},X) = \{0\}$, amenable if, for every Banach \mathcal{A} -bimodule X, $H^1(\mathcal{A},X^*) = \{0\}$ (this definition was introduced by B.E. Johnson in [4]), n-weakly amenable if, $H^1(\mathcal{A},\mathcal{A}^{(n)}) = \{0\}$ (this definition generalizes that introduced by Bade, Curtis and Dales in [1]) and weakly amenable if \mathcal{A} is 1-weakly amenable (this definition was introduced by Dales, Ghahramani and Gronbaek in [2]).

Received March 4, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 46H20, 46H40.

Key words and phrases: Banach algebra, weak amenability, Arens regular, n-weak amenability.

We shall also consider the second dual \mathcal{A}^{**} of a Banach algebra \mathcal{A} as a Banach algebra. Where, two products are defined on \mathcal{A}^{**} as follows. Let $a \in \mathcal{A}, a^* \in \mathcal{A}^*$ and $F, G \in \mathcal{A}^{**}$, then Fa^* and a^*F are defined in \mathcal{A}^* by the formulae

$$\langle a, Fa^* \rangle = \langle a^*a, F \rangle, \ \langle a, a^*F \rangle = \langle aa^*, F \rangle$$

and $F\square G$ and $F\triangle G$ are defined in \mathcal{A}^{**} by the formulae

$$\langle a^*, F \square G \rangle = \langle G a^*, F \rangle, \ \langle a^*, F \triangle G \rangle = \langle a^* F, G \rangle.$$

Then \mathcal{A}^{**} is a Banach algebra with respect to the either of the products \square and \triangle ; these products are called the first and second Arens products on \mathcal{A}^{**} , respectively. The algebra \mathcal{A} is defined to be Arens regular if the two products \square and \triangle coincide in \mathcal{A}^{**} . For the general theory of Arens products, see [3] and [5], for example. Let \mathcal{A} be a Banach algebra and $P_n: \mathcal{A}^{(n)} \longrightarrow \mathcal{A}^{(n+2)}$ be the natural embedding where

$$\langle \phi_{n+1}, P_n(\phi_n) \rangle = \langle \phi_n, \phi_{n+1} \rangle, \ (\phi_n \in \mathcal{A}^{(n)}, \phi_{n+1} \in \mathcal{A}^{(n+1)})$$

where $\mathcal{A}^{(0)} = \mathcal{A}$ and $\mathcal{A}^{(n)}$ is the *n*-th dual of \mathcal{A} . We shall require the following standard properties of the Arens products. Suppose (a_{α}) and (b_{β}) are nets in \mathcal{A} with $P_0(a_{\alpha}) \longrightarrow F$ and $P_0(b_{\beta}) \longrightarrow G$ in $(\mathcal{A}^{**}, \sigma)$, where $\sigma = \sigma(\mathcal{A}^{**}, \mathcal{A}^*)$ is the weak* topology on \mathcal{A}^{**} . Then $F \square G = \lim_{\alpha} \lim_{\beta} P_0(a_{\alpha}b_{\beta})$ and $F \triangle G = \lim_{\beta} \lim_{\alpha} P_0(a_{\alpha}b_{\beta})$ in $(\mathcal{A}^{**}, \sigma)$.

DEFINITION 1.1. Let \mathcal{A} be a Banach algebra. We say that \mathcal{A} has the strongly double limit property (SDLP) if for each bounded net (a_{α}) in \mathcal{A} and each bounded net (a_{β}^*) in \mathcal{A}^* , $\lim_{\alpha} \lim_{\beta} \langle a_{\alpha}, a_{\beta}^* \rangle = \lim_{\beta} \lim_{\alpha} \langle a_{\alpha}, a_{\beta}^* \rangle$ whenever both iterated limits exist.

LEMMA 1.2. Let A be a Banach algebra. Then A has the SDLP if and only if $P_0^{**} = P_2$.

Proof. Let \mathcal{A} has the SDLP, $F \in \mathcal{A}^{**}$, $\phi_3 \in A^{(3)}$ and let (a_{α}) in \mathcal{A} and (a_{β}^*) in \mathcal{A}^* such that $||a_{\alpha}|| \leq ||F||$, $P_0(a_{\alpha}) \longrightarrow F$ and $||a_{\beta}^*|| \leq ||\phi_3||$, $P_1(a_{\beta}^*) \longrightarrow \phi_3$. Then

$$\begin{array}{rcl} \langle \phi_3, P_2(F) \rangle & = & \langle F, \phi_3 \rangle \\ & = & \lim_{\beta} \left\langle F, P_1(A_{\beta}^*) \right\rangle \\ & = & \lim_{\beta} \left\langle a_{\beta}^*, F \right\rangle \\ & = & \lim_{\beta} \lim_{\alpha} \left\langle a_{\alpha}, a_{\beta}^* \right\rangle. \end{array}$$

On the other hand,

$$\langle \phi_3, P_0^{**}(F) \rangle = \langle P_0^*(\phi_3), F \rangle$$
$$= \lim_{\alpha} \langle a_{\alpha}, P_0^*(\phi_3) \rangle$$
$$= \lim_{\alpha} \lim_{\beta} \langle a_{\alpha}, a_{\beta}^* \rangle.$$

Since \mathcal{A} has the SDLP, $P_0^{**}(F) = P_2(F)$, therefore $P_0^{**} = P_2$.

Conversely, let $P_0^{**} = P_2$, (a_{α}) in \mathcal{A} and (a_{β}^*) in \mathcal{A}^* be bounded nets such that $\lim_{\alpha} \lim_{\beta} \langle a_{\alpha}, a_{\beta}^* \rangle$ and $\lim_{\beta} \lim_{\alpha} \langle a_{\alpha}, a_{\beta}^* \rangle$ exist. We choose a subnet $(P_0(a_{\gamma}))$ of $(P_0(a_{\alpha}))$ and $F \in \mathcal{A}^{**}$ such that $P(a_{\gamma}) \longrightarrow F$ in $(\mathcal{A}^{**}, \omega^*)$ and let $(P_1(a_{\delta}^*))$ be the subnet of $(P_1(a_{\beta}^*))$ and $\phi_3 \in \mathcal{A}^{(3)}$ such that $P_1(a_{\delta}^*) \longrightarrow \phi_3$ in $(\mathcal{A}^{(3)}, \omega^*)$. Then we have:

$$\lim_{\alpha} \lim_{\beta} \left\langle a_{\alpha}, a_{\beta}^{*} \right\rangle = \lim_{\gamma} \lim_{\delta} \left\langle a_{\gamma}, a_{\delta}^{*} \right\rangle
= \lim_{\gamma} \lim_{\delta} \left\langle P_{0}(a_{\gamma}), P_{1}(a_{\delta}^{*}) \right\rangle
= \lim_{\gamma} \left\langle P_{0}(a_{\gamma}), \phi_{3} \right\rangle
= \lim_{\gamma} \left\langle a_{\gamma}, P_{0}^{*}(\phi_{3}) \right\rangle
= \lim_{\gamma} \left\langle P_{0}^{*}(\phi_{3}), P_{0}(a_{\gamma}) \right\rangle
= \left\langle P_{0}^{*}(\phi_{3}), F \right\rangle = \left\langle \phi_{3}, P_{0}^{**}(F) \right\rangle$$

and similarly

$$\lim_{\beta} \lim_{\alpha} \langle a_{\alpha}, a_{\beta}^{*} \rangle = \lim_{\delta} \lim_{\gamma} \langle a_{\gamma}, a_{\delta}^{*} \rangle$$

$$= \lim_{\delta} \lim_{\gamma} \langle a_{\delta}^{*}, P_{0}(a_{\gamma}) \rangle$$

$$= \lim_{\delta} \langle a_{\delta}^{*}, F \rangle$$

$$= \lim_{\delta} \langle F, P_{1}(a_{\delta}^{*}) \rangle$$

$$= \langle F, \phi_{3} \rangle = \langle \phi_{3}, P_{2}(F) \rangle.$$

Therefore, $\lim_{\alpha} \lim_{\beta} \langle a_{\alpha}, a_{\beta}^* \rangle = \lim_{\beta} \lim_{\alpha} \langle a_{\alpha}, a_{\beta}^* \rangle$, so \mathcal{A} has the SDLP.

LEMMA 1.3. Let \mathcal{A} be a Banach algebra and P_2 be ω^* - ω^* continuous. Then \mathcal{A} has the SDLP. In particular, if \mathcal{A} is reflexive, then \mathcal{A} has the SDLP.

Proof. It is easy to see that P_0^{**} is ω^* - ω^* continuous and $P_0^{**} \circ P_0 = P_2 \circ P_0$. Let $F \in \mathcal{A}^{**}$ and (a_{α}) be a net in \mathcal{A} such that $P_0(a_{\alpha}) \longrightarrow F$

in (\mathcal{A}^{**}, w^*) . Since P_2 is $\omega^* - \omega^*$ continuous, so $P_2(P_0(a_\alpha)) \longrightarrow P_2(F)$ in $(\mathcal{A}^{(4)}, w^*)$, similarly since P_0^{**} is $\omega^* - \omega^*$ continuous, so $P_0^{**}(P_0(a_\alpha)) \longrightarrow P_0^{**}(F)$. Therefore, $P_2(F) = P_0^{**}(F)$ and by lemma 1.1. \mathcal{A} has the SDLP.

Let $F_{\alpha} \longrightarrow F$ in $(\mathcal{A}^{**}, w^{*})$ and $\phi_{3} \in \mathcal{A}^{(3)}$ and \mathcal{A}^{*} is reflexive, so there is $a^{*} \in \mathcal{A}^{*}$ such that $P_{1}(a^{*}) = \phi_{3}$.

$$\langle \phi_3, P_2(F_\alpha) \rangle = \langle P_1(a^*), P_2(F_\alpha) \rangle$$
$$= \langle a^*, F_\alpha \rangle \longrightarrow \langle a^*, F \rangle$$
$$= \langle \phi_3, P_2(F) \rangle.$$

Therefore, $P_2(F_{\alpha}) \longrightarrow P_2(F)$ in $(\mathcal{A}^{(4)}, w^*)$, so P_2 is ω^* - ω^* continuous and therefore, \mathcal{A} has the SDLP.

It is easy to check that the converse of the lemma 1.3. is true, i.e. if \mathcal{A} has the SDLP, then P_2 is ω^* - ω^* continuous, so we have the following proposition.

PROPOSITION 1.4. Let A be a Banach algebra. Then the following are equivalent:

- 1) A has the SDLP;
- 2) $P_0^{**} = P_2;$
- 3) P_2 is ω^* - ω^* continuous.

Let \mathcal{A} be a Banach algebra. Then $\mathcal{A}^{**}, \mathcal{A}^{(4)}, ..., \mathcal{A}^{(2n)}, ...$ are Banach algebras with respect to Arens products. Therefore, $\mathcal{A}^{(n)}$ is \mathcal{A} -bimodule, \mathcal{A}^{**} -bimodule,... and $\mathcal{A}^{(2m)}$ -bimodule whenever $n, m \in \mathbb{N} \bigcup 0$ and $2m \leq n$. Hence for each $\phi_n \in \mathcal{A}^{(n)}$ and $a \in \mathcal{A}$ we have:

$$a\phi_n = P_0(a)\phi_n = P_2(P_0(a))\phi_n = \cdots = P_{2m-2}(P_{2m-4}(\cdots (P_0(a))\cdots))\phi_n$$

 $\phi_n a = \phi_n P_0(a) = \phi_n P_2(P_0(a)) = \cdots = \phi_n P_{2m-2}(P_{2m-4}(\cdots (P_0(a))\cdots))$
Where $n, m \in \aleph \bigcup 0$ and $2m \le n$.

THEOREM 1.5. Let \mathcal{A} be a Banach algebra with SDLP and $D: \mathcal{A} \longrightarrow \mathcal{A}^{(n)}$ $(n \in \aleph)$, be a derivation. Then $D^{**}: (\mathcal{A}^{**}, \square) \longrightarrow (\mathcal{A}^{**})^{(n)}$ and $D^{**}: (\mathcal{A}^{**}, \triangle) \longrightarrow (\mathcal{A}^{**})^{(n)}$ are derivations.

Proof. Let $F, G \in \mathcal{A}^{**}$, $a, b \in \mathcal{A}$, $\phi_{2k+1} \in \mathcal{A}^{(2k+1)}$ and n = 2k for some $k \in \mathbb{N}$. (the proof for n = 2k + 1 for some $k \in \mathbb{N}$ is similar.)

$$\langle b, D^{*}(\phi_{2k+1})a \rangle$$
= $\langle D(ab), \phi_{2k+1} \rangle$
= $\langle D(a)b + aD(b), \phi_{2k+1} \rangle$
= $\langle P_{2k-2}(P_{2k-4}(\cdots(P_0(b))\cdots)), \phi_{2k+1}D(a) \rangle + \langle b, D^{*}(\phi_{2k+1}a) \rangle$
= $\langle b, P_0^{*}(P_2^{*}(\cdots(P_{2k-2}^{*}(\phi_{2k+1}D(a)))\cdots)) + D^{*}(\phi_{2k+1}a) \rangle$.

Hence

$$\langle a, GD^{*}(\phi_{2k+1}) \rangle$$

$$= \langle D^{*}(\phi_{2k+1})a, G \rangle$$

$$= \langle P_{0}^{*}(P_{2}^{*}(\dots(P_{2k-2}^{*}(\phi_{2k+1}D(a)))\dots)) + D^{*}(\phi_{2k+1}a), G \rangle$$

$$= \langle P_{2}^{*}(\dots(P_{2k-2}^{*}(\phi_{2k+1}D(a)))\dots), P_{0}^{**}(G) \rangle + \langle \phi_{2k+1}a, D^{**}(G) \rangle$$

$$= \langle G, P_{2}^{*}(\dots(P_{2k-2}^{*}(\phi_{2k+1}D(a)))\dots) \rangle + \langle \phi_{2k+1}a, D^{**}(G) \rangle$$

$$= \langle P_{2k-2}(\dots(P_{2}(G))\dots), \phi_{2k+1}D(a) \rangle$$

$$+ \langle P_{2k-2}(\dots(P_{0}(a))\dots), D^{**}(G)\phi_{2k+1} \rangle$$

$$= \langle a, D^{*}(P_{2k-2}(\dots(P_{2}(G))\dots)) \rangle$$

$$+ P_{0}^{*}(\dots(P_{2k-2}^{*}(D^{**}(G)\phi_{2k+1}))\dots) \rangle .$$

Therefore

$$\langle \phi_{2k+1}, D^{**}(F \square G) \rangle$$
= $\langle GD^{*}(\phi_{2k+1}), F \rangle$
= $\langle D^{*}(P_{2k-2}(\cdots(P_{2}(G))\cdots)), F \rangle$
 $+ \langle P_{0}^{*}(\cdots(P_{2k-2}^{*}(D^{**}(G)\phi_{2k+1}))\cdots), F \rangle$
= $\langle P_{2k-2}(\cdots(P_{2}(G))\cdots)\phi_{2k+1}, D^{**}(F) \rangle$
 $+ \langle P_{2}^{*}(\cdots(P_{2k-2}^{*}(D^{**}(G)\phi_{2k+1}))\cdots), P_{0}^{**}(F) \rangle$
= $\langle \phi_{2k+1}, D^{**}(F)G \rangle$
 $+ \langle P_{2k-2}(\cdots(P_{2}(F))\cdots), D^{**}(G)\phi_{2k+1} \rangle$
= $\langle \phi_{2k+1}, D^{**}(F)G + FD^{**}(G) \rangle$.

Hence $D^{**}: (\mathcal{A}^{**}, \square) \longrightarrow (\mathcal{A}^{**})^{(n)}$ is a derivation. Similarly $D^{**}: (\mathcal{A}^{**}, \triangle) \longrightarrow (\mathcal{A}^{**})^{(n)}$ is a derivation.

COROLLARY 1.6. Let \mathcal{A} be a Banach algebra with the SDLP and $(\mathcal{A}^{**}, \square)$ or $(\mathcal{A}^{**}, \triangle)$ be n-weakly amenable. Then \mathcal{A} is n-weakly amenable.

Dales, Ghahramani and Gronbeak in ([2, Corollary 1.10]) have shown that if \mathcal{A} is an Arens regular Banach algebra and $H^1(\mathcal{A}^{**}, \mathcal{A}^{**}) = 0$, then \mathcal{A} is 2-weakly amenable, we develop this result.

LEMMA 1.7. Let \mathcal{A} be a Banach algebra. Then $P_n: (\mathcal{A}^{**})^{(n-2)} \longrightarrow (\mathcal{A}^{**})^{(n)}$ is a \mathcal{A}^{**} -module homomorphism for each $n \geq 2$.

Proof. Let $F \in \mathcal{A}^{**}, \phi_n \in (\mathcal{A}^{**})^{(n-2)}$ and $\phi_{n+1} \in (\mathcal{A}^{**})^{(n)}$. Then we have:

$$\langle \phi_{n+1}, P_n(\phi_n F) \rangle = \langle \phi_n F, \phi_{n+1} \rangle$$

$$= \langle \phi_n, F \phi_{n+1} \rangle$$

$$= \langle F \phi_{n+1}, P_n(\phi_n) \rangle$$

$$= \langle (\phi_{n+1}, P_n(\phi_n) F) \rangle.$$

Therefore, $P_n(\phi_n F) = P_n(\phi_n)F$ and similarly $P_n(F\phi_n) = FP_n(\phi_n)$. \square

LEMMA 1.8. Let \mathcal{A} be an Arens regular Banach algebra. Then P_1 : $\mathcal{A}^* \longrightarrow (\mathcal{A}^{**})^*$ is a \mathcal{A}^{**} -module homomorphism; i.e., $P_1(a^*F) = P_1(a^*)F$ and $P_1(Fa^*) = FP_1(a^*)$ ($a^* \in \mathcal{A}^*$, $F \in \mathcal{A}^{**}$).

Proof. Let $F, G \in \mathcal{A}^{**}$ and $a^* \in \mathcal{A}^*$. We have:

$$\langle G, P_1(a^*F) \rangle = \langle a^*F, G \rangle$$

$$= \langle a^*, F \square G \rangle$$

$$= \langle F \square G, P_1(a^*) \rangle$$

$$= \langle G, P_1(a^*)F \rangle .$$

Then $P_1(a^*F) = P_1(a^*)F$ and similarly $P_1(Fa^*) = FP_1(a^*)$.

THEOREM 1.9. Let \mathcal{A} be a Banach algebra, $n \geq 3$ be a integer, $D: \mathcal{A} \longrightarrow \mathcal{A}^{(n)}$ be a derivation and \mathcal{A} has the SDLP. Then there exists a derivation $\tilde{D}: \mathcal{A}^{**} \longrightarrow (\mathcal{A}^{**})^{(n-2)}$ such that $\tilde{D}(\hat{a}) = D(a)$ $(a \in \mathcal{A})$.

Proof. Let $\tilde{D} = P_{n-1}^*D^{**}$. Without loss of generality we may assume that n = 2k for some $k \in \mathbb{N}$, therefore $\tilde{D} = P_{2k-1}^*D^{**}$. Let $a, b \in \mathcal{A}, F, G \in \mathcal{A}^{**}, \phi_{2k-1} \in \mathcal{A}^{(2k-1)}$. Then we have:

$$\langle b, D^*(P_{2k-1}(\phi_{2k-1}))a \rangle$$
= $\langle D(a)b + aD(b), P_{2k-1}(\phi_{2k-1}) \rangle$
= $\langle P_{2k-2}(\cdots(P_0(b))\cdots), P_{2k-1}(\phi_{2k-1})D(a) \rangle$
+ $\langle b, D^*(P_{2k-1}(\phi_{2k-1})a) \rangle$
= $\langle b, P_0^*(P_2^*(\cdots(P_{2k-2}^*(P_{2k-1}(\phi_{2k-1})D(a)))\cdots)) \rangle$
+ $\langle b, D^*(P_{2k-1}(\phi_{2k-1})a) \rangle$.

Therefore, $D^*(P_{2k-1}(\phi_{2k-1})a) = P_0^*(\cdots(P_{2k-2}(P_{2k-1}(\phi_{2k-1})D(a)))\cdots) + D^*(P_{2k-1}(\phi_{2k-1})a)$. Hence

$$\langle a, GD^{*}(P_{2k-1}(\phi_{2k-1})) \rangle$$

$$= \langle D^{*}(P_{2k-1}(\phi_{2k-1}))a, G \rangle$$

$$= \langle P_{2}^{*}(\dots (P_{2k-2}^{*}(P_{2k-1}(\phi_{2k-1})D(a))) \dots), P_{0}^{**}(G) \rangle$$

$$+ \langle P_{2k-1}(\phi_{2k-1})a, D^{**}(G) \rangle$$

$$= \langle P_{2k-2}(\dots (P_{2}(G)) \dots), P_{2k-1}(\phi_{2k-1})D(a) \rangle$$

$$+ \langle P_{2k-1}(\phi_{2k-1})a, D^{**}(G) \rangle$$

$$= \langle a, D^{*}(P_{2k-2}(\dots (P_{2}(G)) \dots)P_{2k-1}(\phi_{2k-1})) \rangle$$

$$+ \langle a, P_{0}^{*}(P_{2}^{*}(\dots (P_{2k-2}^{*}(D^{**}(G)P_{2k-1}(\phi_{2k-1})))) \dots)) \rangle.$$

Since P_{2k-2} is a \mathcal{A}^{**} -module homomorphism, so P_{2k-1}^{*} is a \mathcal{A}^{**} -module homomorphism and therefore, we have:

$$\left\langle \phi_{2k-1}, \tilde{D}(F \square G) \right\rangle$$

$$= \left\langle GD^{*}(P_{2k-1}(\phi_{2k-1})), F \right\rangle$$

$$= \left\langle P_{2k-2}(\cdots(P_{2}(G)) \cdots) P_{2k-1}(\phi_{2k-1}), D^{**}(F) \right\rangle$$

$$+ \left\langle P_{2k-2}(\cdots(P_{2}(F)) \cdots), D^{**}(G) P_{2k-1}(\phi_{2k-1}) \right\rangle$$

$$= \left\langle P_{2k-1}(\phi_{2k-1}), D^{**}(F)G + FD^{**}(G) \right\rangle$$

$$= \left\langle \phi_{2k-1}, P_{2k-1}^{*}D^{*} * (F)G + FP_{2k-1}^{*}(D^{**}(G)) \right\rangle$$

$$= \left\langle \phi_{2k-1}, \tilde{D}(F)G + F\tilde{D}(G) \right\rangle .$$

Therefore, \tilde{D} is a derivation.

For each $a \in \mathcal{A}$ and $\phi_{n-1} \in \mathcal{A}^{(n-1)}$ we have:

$$\left\langle \phi_{n-1}, \tilde{D}(\hat{a}) \right\rangle = \left\langle \phi_{n-1}, P_{n-1}^*(D^{**}(P_0(a))) \right\rangle$$

$$= \left\langle D^*(P_{n-1}(\phi_{n-1})), P_0(a) \right\rangle$$

$$= \left\langle a, D^*(P_{n-1}(\phi_{n-1})) \right\rangle$$

$$= \left\langle \phi_{n-1}, D(a) \right\rangle.$$

Then $\tilde{D}(\hat{a}) = D(a)$ for each $a \in \mathcal{A}$.

If \mathcal{A} is Arens regular, then theorem 1.9. for n=2 is correct [2, Corollary 1.10]. So, we have the following proposition.

PROPOSITION 1.10. Let A be a Banach algebra with the SDLP.

i) If (A^{**}, \square) or (A^{**}, \triangle) is (n-2)-weakly amenable, then A is n-weakly amenable.

ii) If \mathcal{A} is Arens regular and $H^1(\mathcal{A}^{**}, \mathcal{A}^{**}) = 0$, then \mathcal{A} is 2-weakly amenable.

Proof. Let $D: \mathcal{A} \longrightarrow \mathcal{A}^{(n)}$ be a derivation and $(\mathcal{A}^{**}, \square)$ is (n-2)-weakly amenable. In both i, ii there exists a derivation $\tilde{D}: (\mathcal{A}^{**}, \square) \longrightarrow (\mathcal{A}^{**})^{(n-2)}$ such that $\tilde{D}(\tilde{a}) = D(a), (a \in \mathcal{A})$. Since $(\mathcal{A}^{**}, \square)$ is (n-2)-weakly amenable, so there is $\phi_n \in (\mathcal{A}^{**})^{(n-2)}$ such that $\tilde{D} = \delta_{\phi_n}$. It is easy to see that $D = \delta_{\phi_n}$ and D is inner.

PROPOSITION 1.11. Let \mathcal{A} be a dual Banach algebra, $\mathcal{A}=X^*$ for some Banach space X and product on \mathcal{A} be separately ω^* -continuous and $\pi:X\longrightarrow X^{**}=\mathcal{A}^*$ be the natural embedding. Then $\pi^*:(\mathcal{A}^{**},\square)\longrightarrow \mathcal{A}^*$ and $\pi^*:(\mathcal{A}^{**},\triangle)\longrightarrow \mathcal{A}^*$ are homomorphisms.

Proof. It is easy to see that $\pi^*(P_0(a)) = a$, $(a \in \mathcal{A})$. Let $F, G \in \mathcal{A}^{**}$ and $(a_{\alpha}), (b_{\beta})$ be bounded nets in \mathcal{A} such that $P_0(a_{\alpha}) \longrightarrow F$ and $P_0(b_{\beta}) \longrightarrow G$ in (\mathcal{A}^{**}, w^*) . The mapping π^* is ω^* - ω^* continuous, so $a_{\alpha} \longrightarrow \pi^*(F)$ and $b_{\beta} \longrightarrow \pi^*(G)$ in (\mathcal{A}, w^*) . For each α we have:

$$w^* - \lim_{\beta} \pi^* (P_0(a_{\alpha}) \square P_0(b_{\beta})) = w^* - \lim_{\beta} \pi^* (P_0(a_{\alpha}b_{\beta}))$$
$$= w^* - \lim_{\beta} a_{\alpha}b_{\beta}$$
$$= a_{\alpha}G.$$

On the other hand, $P_0(a_{\alpha}) \square P_0(b_{\beta}) \longrightarrow P_0(a_{\alpha}) \square G$ in (\mathcal{A}^{**}, w^*) , so $\pi^*(P_0(a_{\alpha}) \square P_0(b_{\beta})) \longrightarrow \pi^*(P_0(a_{\alpha}) \square G)$. Therefore, $\pi^*(P_0(a_{\alpha}) \square G) = a_{\alpha}\pi^*(G)$. $P_0(a_{\alpha}) \square G \longrightarrow F \square G$ in (\mathcal{A}^{**}, w^*) , then $\pi^*(a_{\alpha}) \square G \longrightarrow \pi^*(F)\pi^*(G)$, and $a_{\alpha} \longrightarrow \pi^*(F)$ in (\mathcal{A}, w^*) , so $a_{\alpha}\pi^*(G) \longrightarrow \pi^*(F)\pi^*(G)$. Hence $\pi^*(F \square G) = \pi^*(F)\pi^*(G)$. In a similar way we can show that $\pi^*(F \triangle G) = \pi^*(F)\pi^*(G)$.

References

- [1] W. G. Bade, P. C. Curtis, and H. G. Dales, Amenability and weak amenability for Bearling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), no. 3, 359–377.
- [2] H. G. Dales, F. Ghahramani, and N. Gronbaek, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), no. 1, 19–54.
- [3] J. Duncan and Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1978), 309–325.
- [4] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [5] T. W. Palmer, Banach algebras and the general theory of *-algebras. Vol. I. Algebras and Banach algebras, Cambridge University Press, 1994.

A. R. MEDGHALCHI, FACULTY OF MATHEMATICAL SCIENCE, TEACHER TRAINING UNIVERSITY, TALEGHANI AVENUE 599, TEHRAN 15614, IRAN *E-mail*: medghalchi@saba.tmu.ac.ir

T. YAZDANPANAH, DEPARTMENT OF MATHEMATICS, PERSIAN GULF UNIVERSITY, 75168 BOUSHEHR, IRAN

E-mail: yazdanpanah@pgu.ac.ir