SETS OF WEAK EXPONENTS OF INDECOMPOSABILITY FOR IRREDUCIBLE BOOLEAN MATRICES

ZHOU BO*, HAN HYUK CHO[†], AND SUH-RYUNG KIM

ABSTRACT. Let IB_n be the set of all irreducible matrices in B_n and let SIB_n be the set of all symmetric matrices in IB_n . Finding an upper bound for the set of indices of matrices in IB_n and SIB_n and determining gaps in the set of indices of matrices in IB_n and SIB_n has been studied by many researchers. In this paper, we establish a best upper bound for the set of weak exponents of indecomposability of matrices in SIB_n and IB_n , and show that there does not exist a gap in the set of weak exponents of indecomposability for any of class SIB_n and class IB_n .

1. Introduction

Let B_n be the set of all $n \times n$ Boolean matrices; that is, all (0,1)matrices with the usual arithmetic except that 1+1=1. Let r be an
integer with -n < r < n. A matrix $A \in B_n$ is r-indecomposable if it
contains no $k \times l$ zero submatrix with $1 \le k$, $l \le n$ and k+l=n-r+1.
In particular, A is (1-n)-indecomposable if and only if $A \ne 0$, while Ais (n-1)-indecomposable if and only if $A = J_n$, the all-1's matrix. A
1-indecomposable matrix is also said to be fully indecomposable, and a
0-indecomposable matrix is also called a Hall matrix.

By the definition of r-indecomposability, a matrix $A \in B_n$ is r-indecomposable if and only if, for each k such that $\max\{1, 1 - r\} \le k \le \min\{n, n - r\}$, every $k \times n$ submatrix of A has at least k + r columns with nonzero entries.

Received September 30, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 05C20, 15A33.

Key words and phrases: Boolean matrices, weak exponents of indecomposability.

The authors thank KOSEF for its support under grant Com²MaC-KOSEF.

^{*}Supported by National Natural Science Foundation of China (10201009), Guangdong Provincial Natural Science Foundation of China (021072).

[†]Supported by Korea Research Foundation Grant KRF-2003-015-C00011.

A matrix $A \in B_n$ is reducible if there is a permutation matrix P such that

$$PAP^{-1} = \begin{pmatrix} A_1 & 0 \\ A_{21} & A_2 \end{pmatrix},$$

where A_1 and A_2 are nonvacuous square matrices; otherwise A is irreducible. Note that for any $A \in IB_n$ with n > 1

$$A + A^2 + \dots + A^n = J_n$$

and J_n is r-indecomposable for any r with -n < r < n. Hence for any $A \in IB_n$ and any integer r with -n < r < n, there exists a minimum positive integer p such that $A + A^2 + \cdots + A^p$ is r-indecomposable. Such an integer p is called the weak exponent of r-indecomposability of A, and is denoted by $w_r(A)$.

Brualdi and Liu[3] used $f_w(A)$, $h_w(A)$ for $w_1(A)$ and $w_0(A)$ and called them the weak fully indecomposable exponent and weak Hall exponent of A respectively. They suggested that further study on these weak exponents be done.

Liu[9] proved that $f_w(A) \leq \lfloor \frac{n}{2} \rfloor + 1$ and $h_w(A) \leq \lceil \frac{n}{2} \rceil$ for any $A \in IB_n$, where $\lfloor x \rfloor$ and $\lceil x \rceil$ denote the greatest integer $\leq x$ and the smallest integer $\geq x$ respectively.

In [1], it is proven that $w_r(A) \leq \lfloor (n+r+1)/2 \rfloor$, for any matrix $A \in IB_n$ and integer r with -n < r < n, and this upper bound is best possible.

Let SIB_n be the set of all symmetric matrices in IB_n . It can easily be seen that for any $A \in SIB_n$ with n > 2, $A + A^2 + \cdots + A^{n-1} = J_n$, which is equivalent to $w_{n-1}(A) \leq n-1$ (See [5]). Let $A \in B_n$. The sequence of powers $A^0 = I$, A^1 , A^2 , ... forms a finite subsemigroup of B_n . Thus there is a least non-negative integer k = k(A) and a least positive integer p = p(A) such that $A^k = A^{k+p}$. The integers k = k(A) and p = p(A) are called the *index of convergence* or in short the *index* of A and the *period* of A, respectively. A matrix in IB_n with period 1 is called a primitive matrix. It is well known that $k(A) \leq n^2 - 2n + 2$ for any primitive matrix and the equality holds for the Wielandt matrix (see [4, p.82]).

The problem of finding an upper bound for the set of indices of a certain class of matrices in IB_n and SIB_n and determining gaps in the set of indices of a certain class of matrices in IB_n and SIB_n has been studied by many researchers. (See [6, 11, 13]. They especially studied the class of primitive matrices.) In this paper, we establish a best upper bound for the set of weak exponents of r-indecomposability of matrices

in SIB_n and IB_n , and show that there is no gap in the set of weak exponents of r-indecomposability for any of class SIB_n and class IB_n .

2. Results

For a matrix $A = (a_{ij}) \in B_n$, the directed graph of A, D(A), is the graph with vertex set $V(D(A)) = \{1, 2, \dots, n\}$ and arc set $E(D(A)) = \{(i, j) : a_{ij} \neq 0\}$. It is well known that the (i, j) entry of A^k is nonzero if and only if there is a walk of length k from vertex i to vertex j in D(A). If $A \in B_n$ is symmetric, then D(A) corresponds naturally a graph $D_G(A)$ by replacing arcs (u, v) and (v, u) by an edge uv.

The following theorem provides a best possible upper bound for the set of weak exponents of r-indecomposability of matrices in SIB_n .

THEOREM 1. For any matrix $A \in SIB_n$ with n > 2, and any integer r with -n < r < n, we have

$$w_{1-n}(A) = w_{2-n}(A) = 1;$$

$$w_r(A) \le \begin{cases} r & \text{if } 2 \le r \le n-1, \\ 2 & \text{if } 3-n \le r \le 1, \end{cases}$$

and this bound is best possible.

Proof. We consider the following three cases: r = 1 - n or 2 - n; $2 \le r \le n - 1$; $3 - n \le r \le 1$.

Suppose that r = 1 - n or 2 - n. For any $A \in SIB_n$, A has neither zero rows nor zero columns, implying that A is r-indecomposable. So $w_r(A) = 1$.

Suppose that $2 \leq r \leq n-1$. Assume that $A+A^2+\cdots+A^r$ is not r-indecomposable. Then it contains a $k \times l$ zero submatrix with $1 \leq k, \ l \leq n$ and k+l=n-r+1. Let D=D(A). Then there are subsets $V_1, V_2 \subseteq V(D)$ with $|V_1|=k, \ |V_2|=l$ such that for any integer m with $1 \leq m \leq r$, there is no walk of length m from any vertex in V_1 to any vertex in V_2 . Since A is symmetric, $V_1 \cap V_2 = \emptyset$. On the other hand, by the strong connectivity of D, there is a vertex $u \in V_1$ and a vertex $v \in V_2$ such that the distance from v to v is at most $v = |V_1| - |V_2| + 1 = v - (v - v + 1) + 1 = v$, which is a contradiction. So $v = A + A^2 + \cdots + A^r$ is v = C.

In order to show the sharpness of the bound, take $A_0 \in SIB_n$ where $D_G(A_0)$ is the path on n vertices 1, 2, ..., n with edges i(i+1), i = 1, 2, ..., n-1. It is easy to see that the $1 \times (n-r+1)$ submatrix indexed

by the first row and the last n-r columns in $A_0 + A_0^2 + \cdots + A_0^{r-1}$ is zero. This implies that $w_r(A_0) \geq r$. Hence $w_r(A_0) = r$.

Finally suppose that $3 - n \le r \le 1$. Note that an r-indecomposable matrix is also (r - 1)-indecomposable. In this case, $w_r(A) \le w_1(A) \le w_2(A) \le 2$.

To show the bound is best possible, take $A_0 \in SIB_n$, where $D_G(A_0)$ is the star $K_{1,n-1}$. Clearly $w_r(A) = 2$.

The following theorem completely determines the set of weak exponents of r-decomposability of matrices in SIB_n .

THEOREM 2. Let $w_r(SIB_n) = \{w_r(A) : A \in SIB_n\}$ with n > 2. Then

$$w_r(SIB_n) = \begin{cases} \{1\} & \text{if } r = 1 - n, 2 - n, \\ \{1, 2\} & \text{if } 3 - n \le r \le 1, \\ \{1, 2, \dots, r\} & \text{if } 2 \le r \le n - 1. \end{cases}$$

Proof. Note that $J_n \in SIB_n$, $w_r(J_n) = 1$ for all $1-n \le r \le n-1$. The case $1-n \le r \le 2$ follows from Theorem 1. Note also that $w_r(A_0) = 2$ for all $3 \le r \le n-1$, where $D_G(A_0)$ is the star $K_{1,n-1}$. Suppose $3 \le r \le n-1$. By Theorem 1 we only need to show that $\{3, \ldots, r-1\} \subseteq w_r(SIB_n)$ for $3 \le r \le n-1$.

For any integer $3 \le k \le r-1$, take $A_1 \in SIB_n$, where $D_G(A_1) = G$ is a graph on vertices $1, 2, \ldots, n$ with edges i(n-k+1), $i=1, 2, \ldots, n-k$ and i(i+1), $i=n-k+1, \ldots, n$. It is easy to see that $A_1+A_1^2+\cdots+A_1^{k-1}$ contains an $(n-k)\times 1$ zero submatrix, so A_1 is not k-indecomposable and hence not r-indecomposable. But $A_1+A_1^2+\cdots+A_1^k=J_n$. We have $w_r(A_1)=k$, and hence $\{3,\ldots,r-1\}\subseteq w_r(SIB_n)$ for $3\le r\le n-1$. \square

Let $A \in B_n$ and let $X \subseteq V(D(A))$. By $R_t(A, X)$, we denote the set of all vertices reachable from a vertex in X via a walk of length t. Clearly, $R_1(A^i, X) = R_i(A, X)$. Then $A \in B_n$ is r-indecomposable if and only if, for each $X \subseteq V(D(A))$ with $\max\{1, 1 - r\} \leq |X| \leq \min\{n, n - r\}$, $|R_1(A, X)| \geq |X| + r$.

The following theorem completely determines the set of weak exponents of r-decomposability of matrices in IB_n . We need the following Lemma to prove it.

LEMMA 3 ([1, Lemma 1], [9]). Suppose that $A \in IB_n$, $X \subseteq V(D(A))$, and $1 \le t \le n$. If $R_1(\sum_{i=1}^t A^i, X) \ne V(D(A))$, then

$$\left| R_1(\sum_{i=1}^t A^i, X) \right| \ge |R_1(A, X)| + t - 1.$$

THEOREM 4. Let $w_r(IB_n) = \{w_r(A) : A \in IB_n\}$ with -n < r < n, n > 1. Then

$$w_r(IB_n) = \left\{1, 2, \dots, \left\lfloor \frac{n+r+1}{2} \right\rfloor \right\}.$$

Proof. Note that [1] $w_r(A) \leq \lfloor (n+r+1)/2 \rfloor$ for any $A \in IB_n$. The case r = 1-n, 2-n is trivial. Suppose in the following $3-n \leq r \leq n-1$. We need only to show that

$$\{1,2,\ldots,\lfloor (n+r+1)/2\rfloor\}\subseteq w_r(IB_n).$$

For integer a with $\max\{1-r,1\} \le a \le \lfloor (n-r+1)/2 \rfloor$, take $A_0 \in IB_n$ with D(A) = D, where $V(D) = \{1,2,\cdots,n\}$ and $E(D) = \{(i,a+1):1\le i\le a\} \cup \{(i,i+1):a+1\le i\le n-1\} \cup \{(n,i):1\le i\le a\}$. It can be easily seen that all columns except columns $a+1,\ldots,2a+r-1$ are zero in rows $1,2,\ldots,a$ of $A_0+A_0^2\cdots+A_0^{a+r-1}$; hence $A_0+A_0^2+\cdots+A_0^{a+r-1}$ contains a $a\times(n-a-r+1)$ zero submatrix with a+(n-a-r+1)=n-r+1, which implies that $w_r(A_0)\ge a+r$. It can be checked that for each $X\subseteq V(D)$ with $\max\{1,1-r\}\le |X|\le \min\{n,n-r\}$,

$$|R_1(A_0,X)| \ge |X| - a + 1$$
,

and hence, by Lemma 3, $|R_1(A_0 + A_0^2 + \cdots + A_0^{a+r}, X)| \ge |R_1(A_0, X)| + a + r - 1 \ge |X| + r$. This implies that $A_0 + A_0^2 + \cdots + A_0^{a+r}$ is rindecomposable. We have $w_r(A_0) = a + r$.

Suppose that $3-n \le r \le -1$. We take $a=1-r,2-r,\ldots,\lfloor (n-r+1)/2 \rfloor$ to obtain $\{1,2,\ldots,\lfloor (n+r+1)/2 \rfloor\} \subseteq w_r(IB_n)$.

If $1 \le r \le n-1$, then we first take $a=1,2,\lfloor (n-r+1)/2 \rfloor$ to obtain $\{r+1,r+2,\ldots,\lfloor (n+r+1)/2 \rfloor\} \subseteq w_r(IB_n)$. Then by Theorem 2, we have $\{1,2,\ldots,r\} \subseteq w_r(IB_n)$.

In either case, $\{1, 2, \dots, \lfloor (n+r+1)/2 \rfloor\} \subseteq w_r(IB_n)$. It completes the proof.

3. Closing remark

Let $A \in B_n$. If there exists a positive integer k such that A^k is r-indecomposable, then the smallest positive integer k is called the ex-ponent of r-indecomposability of A. If there exists a positive integer k such that A^i is r-indecomposable for all $i \geq k$, then the smallest positive integer k is called the strict exponent of r-indecomposability of A. These (strict) exponents of r-indecomposability of primitive matrices have been investigated in [7, 12]. The cases when r = 1 (fully indecomposable exponent) and r = 0 (Hall exponent) have already been studied

extensively (see [2, 3, 8, 10]). In this paper, we studied weak exponent of r-indecomposability of irreducible matrices some of whose special cases are the weak fully indecomposable exponent and weak Hall exponent initiated by Brualdi and Liu [3]. Theorems 2 and 4 tell us that there is no gap in the set of weak exponents of r-indecomposability for any of class SIB_n and class IB_n .

References

- [1] Z. Bo, Weak exponent of indecomposability of an irreducible Boolean matrix, Ars Combin. **60** (2001), 59–63.
- [2] R. A. Brualdi and B. Liu, Fully indecomposable exponents of primitive matrices, Proc. Amer. Math. Soc. 112 (1991), 1193-1201.
- [3] ______, Hall exponents of Boolean matrices, Czechoslovak Math. J. 40 (1990), 659-670.
- [4] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991.
- [5] M. Lewin, On exponents of primitive matrices, Numer. Math. 18 (1971), 154– 161.
- [6] M. Lewin and Y. Vitek, A system of gaps in the exponent set of primitive matrices, Illinois J. Math. 25 (1981), 87-98.
- [7] B. Liu, On exponent of indecomposability for primitive Boolean matrices, Linear Algebra Appl. 298 (1999), 1–8.
- [8] ______, On fully indecomposable exponent for primitive Boolean matrices with symmetric ones, Linear Multilinear Algebra 31 (1992), 131–138.
- [9] _____, Weak exponents of irreducible matrices, J. Math. Res. Exposition 14 (1994), 35-41.
- [10] B. Liu and Z. Bo, On the Hall exponent of Boolean matrices, Linear Algebra Appl. 46 (1999), 165–175.
- [11] J. Y. Shao, On a conjecture about the exponent set of primitive matrices, Linear Algebra Appl. 65 (1985), 91–123.
- [12] J. Shen, D. Gregory, and S. Neufeld, Exponents of indecomposability, Linear Algebra Appl. 288 (1999), 229–241.
- [13] K. M. Zhang, On Lewin and Vitek's conjecture about the exponent set of primitive matrices, Linear Algebra Appl. 96 (1987), 101–108.

ZHOU BO, DEPARTMENT OF MATHEMATICS, SOUTH CHINA NORMAL UNIVERSITY, GUANGZHOU 510631, CHINA

E-mail: zhoubo@scnu.edu.cn

HAN HYUK CHO AND SUH-RYUNG KIM, DEPARTMENT OF MATHEMATICS EDUCATION, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA

E-mail: hancho@snu.ac.kr srkim@snu.ac.kr