함박꽃나무의 현탁배양세포로부터 [+]-Eudesmin의 생산을 위한 최적화

Optimization of Culture Conditions for the [+]-Eudesmin Production in Magnolia Sieboldii Cells

  • Hwang Sung Jin (Department of Oriental Medicine Materials, Dongshin University)
  • 발행 : 2005.02.01

초록

목련과 수종인 함박꽃나무의 현탁배양세포로부터 생리활성을 갖는 리그난화합물인 (+)-eudesmin을 효율적으로 생산하기 위한 연구로써 플라스크배양 단계에서의 다양한 배양조건들 즉, 배지, 초기 당농도, 교반속도, 초기 접종농도, 그리고 elicitation 효과를 확인하고자 하였다. MS배지를 포함한 4종의 배지에서는 물질의 생산성과 생중량 모두에서 MS배지가 적합한 것으로 나타났다. 130 rpm으로 교반되는 항온배양기에서 $3\%$ sucrose와 0.5 mg/L 2,4-D가 첨가된 MS배지에 0.5 mg (DCW)의 농도로 세포를 접종한 실험구에서 8주 후 플라스크 당 3.71 g (DCW)의 생중량을 얻었으며, 지표물질인 (+)-eudesmin의 함량은 $5\%$ sucrose와 200 mg/L chitosan 처리구에서 $3.2{\mu}g/g$ (DCW)으로 대조구에 비해 1.7배의 증가를 나타내었다. 이와 같은 연구결과는 생물반응기를 이용한 목련과 수종에서의 유용물질 생산 연구에 활용될 수 있을 것으로 사료된다.

In order to product the furofuranoid lignans, (+)-eudesmin which is one of the secondary products from Magnolia sieboldii. through cell suspension cultures; various culture media, initial sucrose concentration, elicitations, shaking speeds, and inoculum sizes. Among the culture media tested, MS medium had a pronounced effect on suspension cell growth and (+)-eudesmin contents. The maximum dry cell weight (DCW) of 3.71 g per flask was obtained at inoculum size of 0.5 g and in MS medium supplemented with $3\%$ sucrose plus 0.5 mg/L 2,4-D after 8 weeks. (+)-Eudesmin biosynthesis was stimulated with high initial sucrose concentration ,and the maximum (+)-eudesmin production of $3.2{\mu}g/g$ DCW was achieved at 200mg/L chitosan and $5\%$ initial medium sucrose. The optimal shaking speeds for dry biomass accumulation and (+)-eudesmin contents was 130 rpm. This work is considered to be helpful for large-scale bioprocessing of Magnolia sieboldii suspension cell cultures in bioreactor.

키워드

참고문헌

  1. Rao, S. R. and G. A. Ravishankar (2002), Plant cell culture: Chemical factories of secondary metabolites, Biotechnology Advances 20, 101-153 https://doi.org/10.1016/S0734-9750(02)00007-1
  2. Matsubara, K., K. Shigekazu, T. Yoshioka, T. Morimoto, Y. Fujita, and Y. Yamada (1989), High density culture of Coptis japonica cells increases berberine production, J. Chem. Tech Biotech 46, 61-69 https://doi.org/10.1002/jctb.280460107
  3. Ulbric, B., W. Wiesner, and H. Arens (1985), Large scale production of rosmarinic acid from plant cell cultures of Coleus blumei Benth. In Secondary metabolism oj plant cell culture, B. Deus-Neumann, W. Barz and E. Reinhard Eds.; Berlin, Springer-Verlag pp. 293-303
  4. DiCosmo, F. and G. H. N. Towers (1984), Stress and secondary metabolism in .cultured plant cells. In Phytochemical adaptations to stress , B. N. Tinunermann, .C. Steelink and F. A. Loewus, Eds., p97-175, Plenum press, NY
  5. Endress, R. (1994), Plant cell biotechnology, p121-242, SpringerVerlag, Berlin, Heidelberg
  6. Dornenberg, H. and D. Knorr D (1995), Strategies for the improvement of secondary metabolites production in plant cell cultures. Enzyme Microb. Technol. 17, 674-684 https://doi.org/10.1016/0141-0229(94)00108-4
  7. Fujita, M., H. Itokawa, and Y. Sashida (1972), Honokiol, a new phenolic compound isolated from the bark of Magnolia ovata, Chem. Pharm. Bull. 20, 183-217
  8. Kimura, M., J. Suzuki, M. Yamada, M. Yoshizaki, T. Kikuchi, S. Kadota, and S. Masuda (1985), Antiinflammatory effect of neolignans isolated from the crude drug 'Shin-i'(Flos Magnoliae), Planta Med 51, 291-293 https://doi.org/10.1055/s-2007-969493
  9. Kvasnickova, L., Z. Glatz, H Sterbova, V. Kahle, J. Slanina ,and P. Musil (2001), Application of capillary electrochromatography using macroporous polyacrylamide columns for the analysis of lignanas from seeds of Schisandra chinensis, J. Chromatogr. A 916, 265-271 https://doi.org/10.1016/S0021-9673(01)00556-8
  10. Sladkovsky, R., P. Solich, and L. Opletal (2001), Simultaneous determination of quercetin, kaempferol and (E)-cinamic acid in vegetative organs of Schisandra chinensis by HPLC, J. Pharm. Biochemi. Anal. 24, 1049-1054 https://doi.org/10.1016/S0731-7085(00)00539-2
  11. Paska, C., G. Innocenti, M. Kunvari, M. Laszlo, and M. Szilagyi (1999), Lignan production by Ipomoea cairica callus cultures, Phytochemistry 52, 879-883 https://doi.org/10.1016/S0031-9422(99)00304-0
  12. Smollny, T., H. Wichers, S. Kalenberg, A. Shahsavari, M. Petersen, and A. W. Alfennann (1998), Accumulation of podophyllotoxin and related lignans in cell suspension cultures of Linum album, Phytochemistry 48, 975-979 https://doi.org/10.1016/S0031-9422(97)00957-6
  13. Seidel, V., J. Windhovel, G. Eaton, A. W. Alferrnann, R. R. J. Arroo, M. Medarde, M. Petersen, and J. G. Woolley (2002), Biosynthesis of podophyllotoxin in Linum album cell cultures, Planta 215, 1031-1039 https://doi.org/10.1007/s00425-002-0834-1
  14. Van Uden, W., N. Pras, and T. M. Malingre (1990), On the improvement of the podophyllotoxin production by phenylpropanoid precursor feeding to cell cultures of Podophyllum hexandrum, Plant Cell Tissue Org. Cult. 23, 217-224 https://doi.org/10.1007/BF00034435
  15. Petersen, M. and A. W. Alfermann (2001), The production of cytotoxic lignans by plant cell cultures, App. Microbiol. Biotechnol. 55, 135-142 https://doi.org/10.1007/s002530000510
  16. Park, H. J. (1996), A new aporphine-type alkaloid from the leaves of Magnolia sieboldii, Korean J. Pharmacogn. 27, 123-128
  17. Choi, J. H., J. Ha, J. H. Park, J. Y. Lee, Y. S. Lee, H. J. Park, J. W. Choi, K. Mass Nakaya, and K.T Lee (2002), Costunolide triggers apoptosis in human leukemia U937 by depleting intracellular thiols. Japan J. Cancer Res. 93, 1327-1333 https://doi.org/10.1111/j.1349-7006.2002.tb01241.x
  18. Lim, S. S., K. H. Shin, H. S. Ban, Y. P. Kim, S. H. Jung, Y. J. Kim, and K. Okuchi (2002), Effect of the essential oil from the flowers of Magnolia sieboldii on the lipopolysaccharide-induced production of nitric oxide and prostaglandin E2 by rat peritoneal macrophage, Plant Med. 68, 459-462 https://doi.org/10.1055/s-2002-32085
  19. Park, S. H., S. U. Choi, C. O. Lee, S. E. Yoo, S. K. Yoon, Y. K. Kim, and S. Y. Ryu (2001), Costunolide, a sesquiterpene from the stem bark of Magnolia sieboldii, inhibits the RAS-famesyl-proteintransferase, Plant Med. 67, 358-359 https://doi.org/10.1055/s-2001-14315
  20. Murashige, T. and F. Skoog (1969), A revised medium for rapid growth and bioassay with tobacco tissue cultures, Physiol. Plant. 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  21. Schenk, R. V. and A. C. Hildrbrandt (1972), Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures, Can J. Bot. 50, 199-204 https://doi.org/10.1139/b72-026
  22. Lloyd, G. B. and B. H. McCown (1980), Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by the use of shoot top culture, Comb. Proc. Int. Plant Prop. Soc. 30, 421-437
  23. Gamberg, O. L., R. A. Miller, and K. Ojima (1968), Nutrient requirements of suspension cultures of soybean root cells, Exp. Cell Res. 50, 148-151
  24. Chang, J. H. and H. J. Lee (1992), Characteristics of oil production during suspension culture with chitosan elicitation, Ann Res Center for New Bio-Master Agric. 111-117
  25. Miyauchi, T. and S. Ozawa (1998), Formation of (+)-eudesmin in Magnolia kobus, Phytochemistry 47, 665-670 https://doi.org/10.1016/S0031-9422(97)00458-5
  26. Stuart, R. and H. E. Street (1969), Studies on the growth in culture of plant cells. IV. The initiation of division in suspensions of stationary phase cells of Acer pesudoplatanus L, J. Exp Bot 20, 556-571 https://doi.org/10.1093/jxb/20.3.556
  27. Sakato, K. and M. Misawa (1974), Effects of chemical and physical conditions on growth of Campotheca acuminata cell cultures, Agric. Biol. Chem. 38, 491-498 https://doi.org/10.1271/bbb1961.38.491
  28. Mori, T., M. Sakurai, and S. Furusaki (1994), Effects of conditioning factor on anthocyanin production in strawberry suspension cultures, J. Sci. Food Agric. 66, 381-388 https://doi.org/10.1002/jsfa.2740660316
  29. Sakurai, M. and T. Mori (1996), Stimulation of anthocyanin synthsis by conditioned medium produced by strawberry suspension cultures, J. Plant Physiol. 149, 599-604 https://doi.org/10.1016/S0176-1617(96)80340-3
  30. Do, C. B. and F. Cormier (1999), Accumulation of anthocyanins enhanced by a high osmotic potential in grape cell suspension culture, Plant Cell Rep. 9, 143-146
  31. Misawa, M. (1985), Production of useful plant metabolites. In Adv Biochem Eng Biotechnol. A. Fiechter Eds., pp. 59-88, Berlin, Springer-Verlag
  32. Knobloch, K. H. and J. Berlin (1980), Influence of medium composition on the formation of secondary compounds in cell suspension cultures of Catharanthus roseus, Z. Naturforsch 35, 551-556
  33. Berlin, J. E. Forche, V. Wray, J. Hammer, and W. Hosel (1983), Formation of benzophenantltiridine alkaloids by suspension cultures of Eschscholtzia californica, Z. Naturforsch 38, 346-352
  34. Sakamoto, K., K. Iida, K. Sawamura, K. Hajiro, Y. Asada, T. Yoshikawa, and T. Furuya (1993), Effects of nutrients on anthocyanin production in cultured cells of Aralia cordata, Phytochemicals 33, 357-360 https://doi.org/10.1016/0031-9422(93)85517-U
  35. Van Gulik, W. M., A. M. Nuutila, K. L. Vinke, H. J. G. ten Hoopen, and J. J. Heijnen (1994), Effects of carbon dioxide, air flow rate, and inoculum density on the batch growth of Catharanthus roseus cell suspension in stirred ferments, Biotechnol. Prog. 10, 335-339 https://doi.org/10.1021/bp00027a015
  36. Zhong, J. J. and T. Yoshida (1995), High-density cultivation of Perilla frutescens cell suspensions for anthocyanin production: Effects of sucrose concentration and inoculum size, Enzyme Microb. Technol. 17, 1073-1079 https://doi.org/10.1016/0141-0229(95)00033-X
  37. Su, W. W. and F. Lei (1993), Rosmarinic acid production in perfused Anchusa officinalis cultures: Effects of inoculum size, Biotechnol. Lett. 15, 1035-1038 https://doi.org/10.1007/BF00129933
  38. Zhong, J. J., J. Seki, S. Kinoshita, and T. Yoshida (1992), Physiological characteristics of cell suspension and cell culture of Perillar frutescens, Biotechnol. Bioeng. 40, 1256-1262 https://doi.org/10.1002/bit.260401015
  39. Wu, S., Y. Zu, and M. Wu (2003), High yield production of salidroside in the suspension culture of Rhodiola sachalinensis, J. Biotechnol. 106, 33-43 https://doi.org/10.1016/j.jbiotec.2003.07.009
  40. James, P. K., M. D. Samija, G. M. Hewirr, E. C. Bugante, and H. Gu (1993), Antiinflammatoryoleanane triterpenes from Terygium wilfordii cell suspension cultures by fungal elicitation, Plant Cell Rep. 12, 356-359
  41. Gregorio, G. H. and V. M. Loyola-vargas (1997), Effects of ASA on secondary metabolism of C. roseus tumor suspension culture, Plant Cell Rep. 16, 87-290
  42. Funk, C. and P. Brodelius (1990), Influence of growth regulators and an elicitor on phenylpropanoide metabolism in suspension cultures of Vanilla planifolia, Phytochemistry 29, 845-848 https://doi.org/10.1016/0031-9422(90)80030-K