Preparation of Carbon Nanomaterial from the Microbial Cellulose

미생물 셀룰로오스로부터 탄소 나노물질의 제조

  • Kim Bong Gyun (Institute of Biomolecule Reconstruction, Sun Moon University) ;
  • Sohng Jae Kyung (Institute of Biomolecule Reconstruction, Sun Moon University) ;
  • Liou Kwangkyoung (Institute of Biomolecule Reconstruction, Sun Moon University) ;
  • Lee Hei Chan (Institute of Biomolecule Reconstruction, Sun Moon University)
  • 김봉균 (선문대학교 생체분자재설계연구소) ;
  • 송재경 (선문대학교 생체분자재설계연구소) ;
  • 류광경 (선문대학교 생체분자재설계연구소) ;
  • 이희찬 (선문대학교 생체분자재설계연구소)
  • Published : 2005.02.01

Abstract

Tar is often produced during the carbonization of cellulose that limits the formation fibrous structure of the carbonized sample. This problem was reduced by applying a high temperature $(up\;to\;800{\circ}C)$ during carbonization process. Alternatively, dry cellulose was immersed in toluene and ultrasonicated prior to carbonization. In both cases, complete fibrous structures were not achieved. The formation of tar was reduced by the heat treatment of cellulose in the presence of HCI vapor before carbonization process. Such treatment before carbonization yielded mostly the fibrous structures of the carbonized sample as evident from SEM analysis. Similar results were found when the cellulose was subjected to a heat treatment in an inert condition followed by the removal of tar by the oxidation process prior to the carbonization.

셀룰로오스의 탄화과정에서는 셀룰로오스의 pyrolysis에 의 해 생산된 타르에 의해 탄화 후, 셀룰로오스 탄화물의 섬유구조를 저해시키는 문제점이 존재한다. 이와 같은 결과는 $800^{\circ}C$이상의 탄화온도와 건조 셀룰로오스를 toluene에 침지하고 초음파 처리 후 탄화한 탄화물에서 감소되지만, 섬유구조만의 탄화물을 얻을 수 없었다. 그러나 셀룰로오스의 탄화에서 타르의 생산을 감소시키는 HCI vapor flow 조건에서의 열처리 과정의 적용과 탄화과정 중 생성된 타르의 제거를 통해서 탄화 후, 대부분의 영역에서 섬유 구조를 갖는 탄화물을 얻을 수 있었다.

Keywords

References

  1. Matveev, A. T., Golberg, D., Novikov, V. P., Klimkovich, L. L., and Bando, Y. (2001), Synthesis of carbon nanotubes below room temperature, Carbon 39, 155-158 https://doi.org/10.1016/S0008-6223(00)00209-8
  2. Shioyama, H. and Akita, T. (2003), A new route to carbon nanotubes, Carbon 41, 179-181 https://doi.org/10.1016/S0008-6223(02)00278-6
  3. Yasuda, A. and Mizutani, W. (2003), Carbon nanostructure formation by a reduction of PTFE, Thin Solid Films 438-439, 313-316 https://doi.org/10.1016/S0040-6090(03)00736-3
  4. Hulicova, D., Sato, F., Okabe, K., Koishi, M., and Oya, A. (2001), An attempt to prepare carbon nanotubes by the spinning of microcapsules, Carbon 39, 1438-1442 https://doi.org/10.1016/S0008-6223(01)00078-1
  5. Bacon, R. and Tang, M. M. (1964), Carbonization of cellulose fibers-I. Low temperature pyrolysis, Carbon 2, 211-214 https://doi.org/10.1016/0008-6223(64)90035-1
  6. Lee, H. C. and Zhao, H. (1996), The Optimal Medium Composition for the Production of Microbial Cellulose by Acetobacter xylinum, Korean J. Biotechol. Bioeng. 11, 550-556
  7. Kilzer, F. J. and Broido, A. (1965), Pyrodynamics 2, 151
  8. Ross, S. E. (1968), Text Res. J. 38, 906 https://doi.org/10.1177/004051756803800905