Characteristics of Submerged and Solid-State Fermentations for Production of Arachidonic Acid Mortierella alpina

Arachidonic Acid 생산을 위한 Mortierella alpina 곰팡이의 심부 및 고체 발효 특성 연구

  • Shin Hyung Tai (Department of Food Biotechnology, Sungkyunkwan University) ;
  • Lee Soo Won (Department of Food Biotechnology, Sungkyunkwan University) ;
  • Park Ki Moon (Department of Food Biotechnology, Sungkyunkwan University) ;
  • Song Jae Whan (Department of Food Biotechnology, Sungkyunkwan University) ;
  • Suh Dong Sang (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Lee Jae Heung (Institute of Life Science and Technology, Sungkyunkwan University)
  • 신형태 (성균관대학교 식품생명공학과) ;
  • 이수원 (성균관대학교 식품생명공학과) ;
  • 박기문 (성균관대학교 식품생명공학과) ;
  • 송재환 (성균관대학교 식품생명공학과) ;
  • 서동상 (성균관대학교 유전공학과) ;
  • 이재흥 (성균관대학교 생명공학연구소)
  • Published : 2005.02.01

Abstract

The objective of this work was to evaluate a solid-state fermentation process for the practical production of arachidonic acid(AA) by Mortierella alpina ATCC 32222. In the present investigation, batch culture kinetics for both submerged- and solid-state fermentations was carried out at $25^{\circ}C$ to identify the relationship between growth and arachidonic acid (AA) production. Glucose and yeast extract were used in submerged fermentations by using flasks, while rice bran was used as a sole raw material in the other type of fermentations by using a series of Petri dishes. It was evident that a mixed-growth associated pattern existed between the two variables, irrespective of modes of fermentations. The effect of carbon to nitrogen (CfN) ratio on AA production in solid-state fermentation was studied in the range of 6.5 - 20. As a result, an optimum condition was found to be 6.5. Supplementary carbon source was not necessary to meet the optimum C/N ratio. Unlike the Previous results obtained by other researchers, a supplement of sodium glutamate up to $4\%$ (w/w) to the rice bran medium did not have a positive effect on the AA productivity. However, an increase in AA productivity was obtained with the rice bran medium supplemented with sesame oil.

본 연구의 목적은 최근 DHA와 더불어 분유첨가제 등 기능성 신소재로서 수요가 증가되고 있는 arachidonic acid (AA)를 곰팡이 Mortierella alpina ATCC 32222를 이용하여 실질적으로 값싸게 생산할 수 있는 고체발효공정을 개발하기 위한 것이다. 본 연구에서는 회분식 심부 및 고체발효연구를 통하여 균체성장과 AA 생성에 대한 패턴을 조사하였는데, 심부발효에서는 포도당과 효모추출물을 그리고 고체발효에서는 농산 부산물인 저렴한 쌀겨를 원료로 하여 실험하였다. 심부발효 및 고체발효의 속도론적 관점에서 두 공정 모두 균체성장과 AA 생성간에 전형적인 mixed-growth associated pattern이 얻어졌다. 고체발효 배지의 최적화를 위하여 carbon to nitrogen (C/N) ratio를 6.5-20 범위로 조절하여 실험해 본 결과 쌀겨에 탄소원인 포도당을 첨가해 주지 않은 경우 즉, 6.5에서 가장 좋은 결과가 얻어졌다. 또한 sodium glutamate를 쌀겨에 소량 $(0-4\%,\;w/w)$ 첨가했을 때 보고된 문헌과는 달리 균체성장은 오히려 감소되는 경향을 보였으며, 고온에서 볶은 참깨로부터 얻어진 sesame oil $(7.5\%,\;w/w)$을 첨가했을 경우 AA 생산성은 약 1.2배가 향상되었다.

Keywords

References

  1. Higashiyama, K., S. Fujikawa, E. Park, and S. Shimizu (2002), Production of arachidonic acid by Mortierella fungi, Biotechnol. Bioprocess Eng. 7, 252-262 https://doi.org/10.1007/BF02932833
  2. Anderson, A. J. and J. P. Wynn (2001), Microbial polyhydroxyalkanoates, polysaccharides and lipids, In Basic biotechnology, C. Ratledge and B. Kristiansen, Eds, pp. 339-348, Cambridge University Press
  3. Yuan, C., J. Wang, Y. Shang, G. Gong, J. Yao and Z. Yu (2002), Production of arachidonic acid by Mortierella alpina $I_{49}-N_{18}$, Food Technol. Biotechnol. 40, 311-315
  4. Singh, A. and O. P. Ward (1997), Production of high yields of arachidonic acid in a fed-batch system by Mortierella alpina ATCC 32222, Appl. Microbiol. Biotechnol. 48, 1-5 https://doi.org/10.1007/s002530051005
  5. Adrio, J. L. and A. L. Demain (2003), Fungal biotechnology, Ind. Microbiol. 6, 191-199 https://doi.org/10.1007/s10123-003-0133-0
  6. Totani, N. and K. Oba (1988), A simple method for production of arachidonic acid by Mortierella alpina, Appl. Microbiol. Biotechnol. 28, 135-137 https://doi.org/10.1007/BF00694300
  7. Stredanaka, S., D. Slugen, M. Stredansky, and J. Grego (1993), Arachidonic acid production by Mortierella alpina grown on solid substrates, World J. Microbiol. Biotechnol. 9, 511-513 https://doi.org/10.1007/BF00386285
  8. Pandey, A., C. R. Soccol, and D. Mitchell (2000), New developments in solid state fermentation: I-bioprocesses and products, Process Biochem. 35, 1153-1169 https://doi.org/10.1016/S0032-9592(00)00152-7
  9. Crueger, W. and A. Crueger (1982), Biotechnology. A text book of industrial microbiology, pp 25-26, Science Tech, Inc.
  10. Hirano, M., H. Mori., Y. Miura, N. Matsunaga, N. Nakamura, and T. Matsunaga (1990), $\gamma$-Linolenic acid production by microalgae, Appl. Biochem. Biotechnol. 24/25, 183-191 https://doi.org/10.1007/BF02920244
  11. Miller, G. L. (1959), Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem. 31, 426-428 https://doi.org/10.1021/ac60147a030
  12. Taussky, H. H. and E. Shorr (1953), A microcolorimetric method for the determination of inorganic phosphorus, J. Biol. Chem. 202, 675-685
  13. Higashiyama, K., S. Fujikawa, E. Y. Park and M. Okabe (1999), Image analysis of morphological change during arachidonic acid production by Mortierella alpina 1S-4, J. Biosci. Bioeng. 87, 489-494 https://doi.org/10.1016/S1389-1723(99)80098-X
  14. Eroshin, V. K., A. D. Satroutdinov, E. G. Dedyukhina, and T, I. Chistyakova (2000), Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis, Process Biochem. 35, 1171-1175 https://doi.org/10.1016/S0032-9592(00)00151-5
  15. Eroshin, V. K., E. G. Dedyukhina, A. D. Satroutdinov, and T. I. Chistyakova (2002), Growth-coupled lipid synthesis in Mortierella alpina LPM 301, a producer of arachidonic acid, Microbiol. 71: 169-172 https://doi.org/10.1023/A:1015142003488
  16. Shimizu, S., H. Kawashima, K. Akimato, Y. Shinmen, and H. Yamada (1989), Microbial conversion of an oil containing $\alpha$ -linolenic acid to an oil containing eicosapentaenoic acid, J. Am. Oil Chem. Soc. 66, 342-347 https://doi.org/10.1007/BF02653286
  17. Wynn, J. P. and C. Ratledge (2000), Evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase, Microbiology, 146, 2325-2331 https://doi.org/10.1099/00221287-146-9-2325
  18. Higashiyama, K., K. Murakami, H. Tsujimura, N. Matsumoto and S. Fujikawa (1999), Effects of dissolved oxygen on the morphology of an arachidonic acid production by Mortierella alpina 1S-4, Biotechnol. Bioeng. 63, 442-448 https://doi.org/10.1002/(SICI)1097-0290(19990520)63:4<442::AID-BIT7>3.0.CO;2-9
  19. Ha, S. J., C. S. Park, and Y. W. Ryu (2004), Selection of organic nitrogen source and optimization of culture conditions for the production of arachidonic acid from Mortierella alpina, Korean J. Biotechnol. Bioeng. 19, 78-82
  20. Suutari, M. and S. Laasko (1994), Microbial fatty acids and thermal adaptation, Crit. Rev. Microbiol. 20, 285-328 https://doi.org/10.3109/10408419409113560
  21. Koike, Y., H. J. Cai, K. Higashiyama, S. Fujikawa and E. Park (2001), Effect of consumed carbon to nitrogen on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina, J. Biosci. Bioeng. 91, 382-389 https://doi.org/10.1263/jbb.91.382
  22. Orthoefer, F. T. (1996), Rice bran oil, In Fifth Edition Bailey's industrial oil & fat products Vol. 2, Y. H. Hui, Ed., p.395, John Wiley & Sons, Inc., New York
  23. Singh, A., S. Wilson, and O. P. Ward (1996), Docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 20892, World J. Microbiol. Biotechnol. 12, 76-81 https://doi.org/10.1007/BF00327806
  24. Lan, W. Z., W. M. Qin, and L. J. Ju (2002), Effect of glutamate on arachidonic acid production from Mortierella alpina, Lett. Appl. Microbiol. 35, 357-360 https://doi.org/10.1046/j.1472-765X.2002.01195.x
  25. Shinmen, Y., S. Shimizu, K. Akimoto, H. Kawashima, and H. Yamada (1989), Production of arachidonic acid by Mortierella fungi, Appl. Microbiol. Biotechnol. 31, 11-16
  26. Deshpande, S. S., U. S. Deshpande, and D. K. Salunkhe ( 1996), Sesame oil, In Fifth Edition Bailey's industrial oil & fat products Vol. 2, Y. H. Hui, Ed., p.468, John Wiley & Sons, Inc., New York
  27. Shimizu, S., K. Akimoto, Y. Shinmen, H. Kawashima, M. Sugano, and H. Yamada (1991), Sesamin is a potent and specific inhibitor of A5 desaturase in polyunsaturated fatty acid biosynthesis, Lipids, 26, 512-516 https://doi.org/10.1007/BF02536595
  28. Yoshida, H. and S. Takagi (1997), Effects of seed roasting temperature and time on the quality characteristics of sesame (Sesame indicum) oil, J. Sci. Food Agric. 75, 19-26 https://doi.org/10.1002/(SICI)1097-0010(199709)75:1<19::AID-JSFA830>3.0.CO;2-C