Journal of the Korea Society of Computer and Information (한국컴퓨터정보학회논문지)
- Volume 10 Issue 2 Serial No. 34
- /
- Pages.21-30
- /
- 2005
- /
- 1598-849X(pISSN)
- /
- 2383-9945(eISSN)
An Adaptive M-estimators Robust Estimation Algorithm
적응적 M-estimators 강건 예측 알고리즘
- Published : 2005.05.01
Abstract
In general, the robust estimation method is well known for a good statistical estimator that is insensitive to small departures from the idealized assumptions for which the estimation is optimized. While there are many existing robust estimation techniques that have been proposed in the literature, two main techniques used in computer vision are M-estimators and least-median of squares (LMS). Among these. we utilized the M-estimators since they are known to provide an optimal estimation of affine motion parameters. The M-estimators have higher statistical efficiency but tolerate much lower percentages of outliers unless properly initialized. To resolve these problems, we proposed an adaptive M-estimators algorithm that effectively separates outliers from non-outliers and estimate affine model parameters, using a continuous sigmoid weight function. The experimental results show the superiority of our method.
강건 예측 기법은 오류 자료(outliers)를 제거하고 정상 자료(non-outliers)만으로 모델의 파라미터를 구하는 통계적인 방법으로 잘 알려져 있다 기존의 문헌에 소개된 많은 강건 예측 알고리즘들이 있으나 컴퓨터 비전 및 영상 처리 분야에서 가장 많이 사용되는 알고리즘은 M-estimators와 LMS(least-median of squares) 방법이다. 이 중 M-estimators는 어파인 모델(affine model)의 파라미터 측정에 있어 최적의 방법으로 잘 알려져 있다. 그러나 M-estimators는 통계적인 효율성이 높지만 초기화가 적절히 수행되지 않으면 오류 자료를 제거하는 데 문제점을 가진다 따라서 본 논문에서는 이런 문제점을 해결하기 위해 연속적인 시그모이드(sigmoid) 가중치 함수를 사용하여 오류 자료와 정상 자료를 효과적으로 분리하면서 어파인 모델의 파라미터를 효과적으로 측정하는 적응적인 M-estimators 강건 예측 알고리즘을 제안한다. 실험에서는 기존의 강건 예측 방법과 제안된 적응적 강건 예측 방법의 성능을 비교 및 분석하여 제안된 방법의 우수함을 보인다.
Keywords