Journal of the Korea Society of Computer and Information (한국컴퓨터정보학회논문지)
- Volume 10 Issue 2 Serial No. 34
- /
- Pages.215-221
- /
- 2005
- /
- 1598-849X(pISSN)
- /
- 2383-9945(eISSN)
A K-Nearest Neighbor Algorithm for Categorical Sequence Data
범주형 시퀀스 데이터의 K-Nearest Neighbor알고리즘
Abstract
TRecently, there has been enormous growth in the amount of commercial and scientific data, such as protein sequences, retail transactions, and web-logs. Such datasets consist of sequence data that have an inherent sequential nature. In this Paper, we study how to classify these sequence datasets. There are several kinds techniques for data classification such as decision tree induction, Bayesian classification and K-NN etc. In our approach, we use a K-NN algorithm for classifying sequences. In addition, we propose a new similarity measure to compute the similarity between two sequences and an efficient method for measuring similarity.
최근에는 단백질 시퀀스, 소매점 거래 데이터, 웹 로그 등과 같은 상업적이거나 과학적인 데이터의 폭발적인 증가를 볼 수 있다. 이런 데이터들은 순서적인 면을 가지고 있는 시퀀스 데이터들이다. 본 논문에서는 이런 시퀀스 데이터들을 분류하는 문제를 다룬다. 분류 기법 으로는 의사결정 나무나 베이지안 분류기, K-NN방법 등 석러 종류가 있는데, 본 연구에서는 또-U방법을 이용하여 시퀀스들을 분류한다. 또한, 시퀀스들간의 유사도를 구하기 위한 새로운 계산 방법과 효율적인 계산 방법도 제안한다.