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Analysis and Control Parameter Estimation of a Tubular Linear Motor
with Halbach and Radial Magnet Array

Seok-Myeong Jang*, Jang-Young Choi T Han-Wook Cho* and Sung-Ho Lee**

Abstract - In the machine tool industry, direct drive linear motor technology is an interesting means
to achieve high acceleration, and to increase reliability. This paper analyzes and compares the
characteristics of a tubular linear motor with Halbach and radial magnet array, respectively. First, the
governing equations are established analytically in terms of the magnetic vector potential and two
dimensional cylindrical coordinate systems. Then, we derive magnetic field solutions due to the PMs
and the currents. Motor thrust, flux linkage and back emf are also derived. The results are shown to be
in good conformity with those obtained from the commonly used finite element method. Finally,
control parameters are obtained from analytical solutions.
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1. Introduction

Our work is motivated by the desire to develop a direct
drive linear motor for machine tool applications. The
applications for such a motor range from material
handling devices to semi-conductor wafer stepping
functions, diamond turning machines and other precision
applications [1]. Tubular structures are very advantageous
compared with flat linear motors, owing to the non-
existence of end-turn effects. In addition to this benefit,
the tubular motor provides many other advantages: 1)
higher maximum speeds and acceleration limits, 2) higher
position accuracy without anti-backlash devices, 3) no
direct physical constraint in the axial direction of
propulsion, 4) no power loss in rotary-linear power
conversion and, 5) no friction except in the ball bearings
that support the platen weight [1].

In this paper, two PM tubular motor structures are
analyzed. One is the tubular motor with the Halbach
magnet array and the other is the tubular motor with the
radial magnet array. Two types of PM tubular motors are
analyzed, with reference to the following parameters as
variables: magnetic fields, flux linkage, motor thrust and
back emf. These variables are derived by the use of
analytical method in terms of the two-dimensional
cylindrical coordinate system. The results are validated
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extensively by comparison with the finite element method.
Finally, control parameters such as thrust constant, back
emf constant and inductance are obtained from analytical
solutions.
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Fig. 1 Schematic of tubular linear motor.

2. Tubular Linear Motor with Halbach and
Radial Magnet Array

2.1 Structures

Fig. | presents the schematic of a tubular linear motor.
It consists of the PMs as a mover, a coil-wrapped hollow
bobbin, and an iron core as a pathway for the magnetic
flux. When stator windings are excited, the mover moves
in the direction of z. The 3-phase stator windings shown in
Fig. 1 can be replaced by single phase windings.

2.2 Analytical model and assumptions

Fig. 2 shows the analytical model for the prediction of
flux density produced by PMs of the tubular linear motor



Seok-Myeong Jang, Jang-Young Choi, Han-Wook Cho and Sung-Ho Lee 155

with Halbach and radial array. The radii shown relate to
the inner magnet radius, #,, the outer magnet radius, 7,
and the outer stator windings radius, r,. Assuming that the
relative recoil permeability of the winding regions and the
iron is unity and infinite, respectively, the magnetic field
analysis due to PMs is confined to two regions represented
as the air region

Fig. 2 Analytical model for the predlctlon of flux density
produced by PMs of tubular linear motor with
Halbach and radial array.
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Fig. 3 Analytical mode! for the prediction of flux density

due to single and three phase current density
distribution.

and the magnet regions. Therefore,

_ [wH

in the air/stator windin,
B= 8w

H, ,urmﬁ + ;zO]TI in the magnets

where 4, is the permeability of the air; g, is the
relative recoil permeability of the magnets and is

—

supposed unity; M is the remanent magnetization. Fig.
3 presents the analytical model for the prediction of flux
density due to single and three phase windings. In order to
predict the flux density due to stator windings, this paper
assumes that the stator current flows through an
infinitesimally thin sheet on the interior surface of the
stator, at ¥=r; and both iron permeability and motor length
are infinite.

3. Magnetic Fields Due to the PMs
3.1 Impulse magnetization technique

By assuming that radial magnet array has only radial
components of magnetization and is rectangular shaped

along the axial coordinate, it is conveniently expressed by
means of the Fourier series expansion for radial
magnetization given by

z M, sin(knz)i: 2)
dd

with k,=nn/t and

M, =43ﬂsin(n7z/2)sin(knrm) 3)
n7py

where # is the nth-order harmonics; t and 7, represent
pole pitch of motor and magnet, respectively; and B,,, is
the PM residual flux density. However, radial
magnetization is a function only of the axial coordinate, as
shown in (1). It is slightly altered, allowing it to function
by both radial and axial coordinates through the
introduction of function G(r) presented in [2]. As a
consequence, the Fourier series expansion for radial
magnetization is modified by

1\7; ( +c2rj Z Msm(kz) C)

n=l0dd

where the coefficients ¢; and ¢, are given in [2]. In a
similar manner, the Fourier series expansion for Halbach
magnetization is given by

—_— @©

M, = Z K%JrczrjM 1+M }sm(k z)(5)

n=1,0dd

where the radial and axial components of Halbach
magnetization are given by

M, = Bren sin(nr/2)sin(k,7,,) (6)
h7tte,

M, = B e sin(n7/2)cos(k,z,,) @)
N,

3.2 Governing Equations
Since there is no free current in the magnet region,
VxH = 0. So,VxB=puyVxM. The magnetic vector

potential A is defined as V x A=B . By the geometry of
the tubular linear motor, the vector potential has only 8-
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components. Therefore, Poisson’s equation for Halbach
and radial magnet array is given by

& 10 1 c
?Agn +;5Ayn —(kj +:2~ Ap” =—,Uokn 71+c2r K (8)
where for tubular motor with radial array K=M,, whilst

for tubular motor with Halbach array K=M,,.

3.3 Characteristic Equations For Flux Density

The resulting axial and radial components of flux
density can be determined from general solutions derived
in (8) and the definition of magnetic vector potential
presented in [3] as follows.
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Fig. 4 Electromagnetic dual of Halbach array: (a) Halbach
magnet array (b) Equivalent current model.

X into the paper

Bl = Y k[4!,(kr)-B.K,(k)]cos(k,z)

n=l,0dd

k”[A'f'IO(knr) - B:IKO(k"r)

B! = 2¢,4,K

n=lz,odd + -zk—z"] cos(k,z)
Bl = Y k[AI(kr)+B,K (kr)]sin(k,z)

n=l,0dd

k [A"I (kr)+B'K (k,r)
B! = K &)
o nzlz,,:‘,,,, +'UT°—(C—'+c2r)]sin(knz)
¥

where I; and K; are modified Bessel functions of the
first and second kind, of order one, and I, and K, are also
modified Bessel functions of the first and second kind, of
order zero [4]. Equation (9) can be applied to tubular
linear motor with either Halbach or radial magnet array.
The coefficients A,), B,, A,” and B,” given in the
Appendix are only different in each model and are
determined by substituting (9) for boundary conditions
given by the following section.

3.4 Boundary Conditions

The Halbach magnet array shown in Fig. 4(a) can be

expressed as an equivalent current model by applying
Ampere’s law to it, as presented in Fig. 4(b) [5]. Since the
equivalent current for axial components of Halbach
magnetization is discontinuous at the upper and lower
surface of the permanent magnet, it must be considered.
However, for radial magnetization it does not have to be
considered owing to the absence of axial magnetized PMs.
In addition, the radial flux density is continuous at all
interfaces and the axial field intensity is also continuous at
all interfaces, except for inner and outer surface of
magnets in the case of Halbach magnetization. Due to the
assumption that the permeability of the stator core is
infinite, the axial field intensity is zero at »=r; for both
Halbach and radial magnetized mover topologies. As a
consequence, boundary conditions of the tubular linear
motor with Halbach and radial array are given by

Halbach magnetization radial magnetization
H(r,,2)=-M, H](r,,z)=0

B:[(rmﬂz) = BrI(rm7Z) Br”(rm’z) = Br[(rm’z)
Hz”(rm’z)_Hzl(rm’Z):_Mzn Hz”(rm’Z)ZHz[(rm’Z)
H!(1,,2)=0 H!(r)=0  (10)

4. Magnetic Fields Due to the Stator Currents
The linear current density J is characterized by only

the azimuthal component J,(z) function of the axial

coordinate, which using the Fourier series expansion can

- be expressed as

J,(2)= i J, sin(k, z) (11)

n=l,0dd

where J, is the function of the current value and the
winding distribution. Since this paper assumes that the
current is distributed in an infinitesimal thin sheet, both
air/stator windings and iron regions remain characterized
by curlH/=0 and then magnetic fields are computed by
means of the vector potential. The governing equation is
represented by Laplace’s equation (8), with K=0.

2
d—Ag"—+l%—(kj +ijA,,n =0 (12

ar’ r dr r?
The boundary conditions are given by

Hz'(rA{,z):Je(z)
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#H (. 2) = H](r,,2)
B/(r,,2)=B/(r,,2) (13)

where £, is the relative recoil permeability of the iron
and is supposed infinity, that is, g =c. The resulting
expression of the flux density due to windings is given by

Bl = Y mk[-I k) + 2K k), cos(k,z)

n=l,0dd

Bl = Y wk [,k )+ xK k), sinlkz)  (14)

n=l,0dd
where the coefficients y,, v, are given by

- 1 - 1,k r)
bk k) 2 K k)] T K (k)

5. Flux Linkages, Back Emf, and Thrust Force

The flux linkage of each phase is given by
A= X[ 2mrB,(2)dzdz (19
7 T 4

where N is the number of conductors per pole, and i and
f are the initial and final position of the considered phase
respectively. Since the back emf is given by the product of
velocity v and the rate of change in flux linkage with
respect to position, it is given by [6]

_dA_dzdr_ da

o, =t _dzdi_ (16)
dt  dt dz dz

The axial thrust is exerted on the stator winding,
resulting from the interaction between the current density
and the permanent magnet field. In the general position z,
the thrust in an infinitesimal tubular motor length dz is
given by

dF,(z)==271,J (2)B, (1,,2)dz (17)

It has the advantage that (17) is free from integrals of
Bessel functions related to a formula 7 = I(}x B)dv that

cause a significant analytical burden.
5.1 Single-Phase Windings

The distribution of the single-phase winding conductors

cover the entire pole pitch, then i=-t and /<0 with N=N,,.
The flux linkage due to PM is

2 8N, 7, plA I (k,r)+B.K, (k)]

lPMl - Z

n=l,0dd n

sin(k,z) (18)

and the flux linkage due to single phase stator windings
is
v 320n,uON;rsisp
A= Z e * 19
(=1 (k) + K (K, )]sin(k, 2)

where p and i, are the pole-pairs and single phase
current, respectively. By substituting (18) for (16), the
back emf for the tubular motor with single phase windings
is obtained as:

8Np7rrsvp[A,fI1 (kr)+ B:K1 (k)]

oo
en= 2

n=1,0dd T

sin(k,z) (20)

From (17), the thrust for the tubular motor with single
phase windings is obtained as:

=, 877 pi N [ 41, (k) + B, (k)]

F(2)=- z

n=l,0dd T

os(kz) (1)

5.2 Three-Phase Windings

The distribution of each phase of the three-phase
winding cover a third of the pole pitch. Eq. (15) can be
applied, substituting N with 3N,. Then, with reference to
the phase a, i=-21/3 and f=-1/3. The flux linkage due to
PMs is

M3 _ i (24N,m;pcos(%)/n)

"ol [ AL (k,r) + BIK (k)]

sin(k,z) (22)

and the flux linkage due to phase A is

_ 2880,4 N2r,
! #3[_[1(/(}1’})_1;11(1(]%73)]' @3)

Bl 7Th
n=l,0dd nr\ - (nrc).. (nT) ..
COS[T)sm[ﬁ)sm[—(Jsm(knz)

where i, represents the current of phase A. By
substituting (22) for (16), the back emf per phase of the
tubular motor with three phase windings is obtained as:
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(24N,v7rrs P cos(%) / rj-

[4,1,(k,r.)+ B, K, (k,r)]

sink z) Y

«K0
€3 = Z

n=1,0dd

From (17), the thrust for the tubular motor with three
phase windings is obtained as:

o ([-247r N, pLAL (k) + Bl 1)) 7 o 25)

Fi(2)=
? nﬂ%;u l:cos(k"z)ia +cosk,(z —%)ib +cosk,(z —%)ic ]

6. Control Parameter Estimation

6.1 Back-Emf Constant

Since the back-emf can be calculated by e= vW(dipy/dz)
=vKp, the back emf constant for the tubular motor with
single phase windings is obtained from (20)

Ky = Y. 8N zrpl AL (k) + B.K, (k,r.)])/ 7 (26)
n=l,0dd

In a similar manner, the back emf constant for the
tubular motor with three phase windings is obtained from
(24)

nr
o (24N,7rr: j2 COS(T) / rj- @27

Ky = Z

n=l,odd

[4,1,(k,7,) + B,K, (k,1.)]

6.2 Thrust Constant

Since the thrust for the tubular motor with single phase
windings can be calculated by F,=K7i;, the thrust constant
is obtained from (21)

KTl = Z 8NP7Z'V:]7[A:II(]€”VS)+B:K1(knrs)]/z' (28)

n=1,0dd

It can be observed from (26) and (28) that the back-emf
constant Kz, is identical with thrust constant K7;. However,
since the thrust constant for the tubular motor with three
phase windings can be calculated by Kys= 3Kp3/2, it is
obtained from (27)

nm ‘
(36N,7rrs p cos(—3—) / r)- (29)

(4, 1,(k,1,) + B, K, (k,1,)]

Kn: Z

n=l,0dd

6.3 Inductance

Since the inductance for the tubular motor with single
phase windings is calculated by L=A4,J, it is obtained
from (19)

= 32 N?
=3 LRI ) K (k)] (G0)
n=1,0dd nTtn’

Since the inductance for phase A of the tubular motor
with three phase windings is obtained from (23)

2880, 1, N2r,
e $ B P L )~ 2k ()| OV
. n=\,0dd nix . n” . nir .
cos[T]sm{W]sm[?]sm(knz)

On the other hand, flux linkage due to phase A is given
by

A =Li +M,+Mi =Li +M(,+i)

.. 3. (32)
=(L,-M)i, =—Lj
2
Therefore, synchronous inductance is obtained as
3
synch = ;La (33)

7. Results And Discussion

The design parameters of the tubular linear motor are
presented in Table 1. Fig. 5 (a) and (b) show the
comparison between analytical and FE results for the
radial flux density of the tubular motor with Halbach and
radial array, respectively. Fig. 6 illustrates the radial flux
density due to the single and three phase currents. Both
results are shown in good agreement with those obtained
from FEA. Figs. 7 and 8 indicate the flux linkage and back
emf for the tubular linear motor with two different arrays
and winding patterns respectively. In particular, for the
case when mover velocity v=100(mm/s), the analytical
results for the back emf are compared with FE results. Fig.
9 provides a comparison of between analytical and FE
results for axial thrust according to mover position of the
tubular linear actuator with two different array and
winding patterns. It can be seen that the thrust of the
tubular linear motor with cylindrical Halbach array is
superior to that with radial array.
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Fig. 6 Radial flux density distributions due to single- and

three-phase windings.

Table 1 Design Parameters Of The Tubular Linear Motor

Radial Magnet ' Halbach Magnet
Parameters
Array Array
T (pole pitch) 0(mm)
T m (PM pole pitch) 15(mm) 10(mm)

t, (inner PM radius)  |10(mm)

r; (outer PM radius) 0(mm)

T, (outer air-gap radius)[25(mm)

B, (remanence) 1.1(T)

p (pole number) 4 poles

4 and 1/2 poles

0.018

....... FEA
O Radial
% Halbach

0.012 |-

©
8
XN

0.000 8

Flux linkage(V's)

T 2t
Position(mm)

@

0.010 [ % g . FEA
O Radial
0.005 |-, > N | B Halbach

Analytical i

Flux Linkage(Vs)
£ s
8

T 2
Position(mm) '

®)
Fig. 7 The flux linkage due to Halbach and radial magnet
array; (a) single-phase and (b) three-phase

windings.
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Fig. 8 The back emf due to Halbach and radial magnetized
PMs; (a) single-phase and (b) three-phase windings

Table II reports the control parameters estimated by
analytical solutions. Although these are not verified by FE
analysis and experiments, the results presented in Table 1T
can be regarded as reasonable because analytical solutions
such as thrust, back-emf and flux linkage have already
been verified extensively with FE analysis.
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Fig. 9 Thrust on the mover with Halbach and radial
magnetized PMs: (a) single-phase windings with
=1(A) and (b) three-phase windings with i,=1(A),
i,=-0.5(A), i.=-0.5(A).

Table 2 Estimated Control Parameters

Radial Magnet | Halbach Magnet
Array Array
Parameters
Iphase | 3phase | lphase [3phase
t (thrust constant) 29.1 18.5
25 16.8
Kg (back emf constant) 18.4 12.3
0.94 0.9 0.94 0.9
inductance/pole.phase
( polephase) k) | [mH) | [mH] | [mH]

9. Conclusions

In this paper, analytical solutions for the magnetic fields,
forces, flux linkages and back emf of tubular motor model
with Halbach and radial magnetized PMs are given. The
analytical results have been verified by finite element
analysis, confirming the advantageousness of the proposed
analysis. And then, on the basis of two-dimensional
analytical solutions, control parameters required in order
to perform dynamic analysis of the tubular linear motor
are derived. The analytical model presented in this paper
can be applicable to both slot and slotless topologies and
is also very attractive in terms of rapid analysis. In our
future work, on the basis of our analytical results, dynamic
analysis of a tubular linear motor will be performed.
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Appendix
HOI = Il (knrm )KO (knrm)+10 (knrm)Kl (knrm)

MM, [ 2¢, -
O="—"|—=I"-0
(5o

I=w,I (kr,)-K (k,r,)
\I] — |:2C’.2/u0Mrn + luOMzn :| 1
I(

knz kn knro)
A= KO (knn))
IO (knn))
©=w,'I,(k,r, )+ K, (k.1;,)
ol =— K, (k:r,)
§ 10 (knr:v)
_ 2c,14,M,,
kn210 (knrb)

The constant coefficients of magnetic field solution for
tubular linear motor with Halbach magnet array (9) are
given by

W11, ®+[c1> +ﬁ0]’€‘jlrJ[Ko (i)~ Iy (i )}

Bl =

O, (A+a, ]
204 Myy oM.y
Ok,2 Ok,
Anl =— IB I
—w, W, +A| @ +HoM
An” —-_ N k"
I, [A +ao, J
w1, + @+ #oMen
B I/ — kn

n

IT,, (A + a)nl)

The constant coefficients of magnetic field solution for
tubular linear motor with radial magnet array (9) are given
by
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An[ = - IB !
B! = All;,©+@ [Ko (kutn ) = ALy (K, )] _264M,,
" oI, (A+a,) Ok,’
n_ _Ally+®
" T (A+a,)
AWH =:E)EI_AM
My [A+o,]
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