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MOMENTS OF VARIOGRAM ESTIMATOR FOR A
GENERALIZED SKEW ¢ DISTRIBUTION

HyouNnc-Moon Kim!

ABSTRACT

Variogram estimation is an important step of spatial statistics since it
determines the kriging weights. Matheron’s variogram estimator can be
written as a quadratic form of the observed data. In this paper, we extend
a skew ¢ distribution to a generalized skew ¢ distribution and moments of
the variogram estimator for a generalized skew ¢ distribution are derived in
closed forms. After calculating the correlation structure of the variogram
estimator, variogram fitting by generalized least squares is discussed.

AMS 2000 subject classifications. Primary 11E25.
Keywords. Multivariate generalized skew ¢ distribution, quadratic form, skewness, kur-
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1. INTRODUCTION

Variogram estimation is an important step of spatial statistics since it de-
termines the kriging weights. Matheron’s classical variogram estimator of an
intrinsic stationary spatial process, {Y(x) : x € D C R% d > 1}, is as follows
(Cressie, 1993):

29(h) = (1/Nn) Y _ (Y (x:) — Y(x))%, (1.1)

N(h)

where Ny, is the cardinality of V(h). This estimator also can be expressed as a
quadratic form,

24(h) = y'NihA(h)y, y=(¥(x), Y (%)) (1.2)
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where the spatial design matrix, A(h)/Ny, is given by Genton(1998a) and Gorsich
et al. (2002).

Understanding the statistical properties of the variogram estimator (1.2) is
important. Because the same observation is used for different lags, variogram
estimates at different spatial lags are correlated. As a consequence, variogram
fitting by ordinary least squares is not satisfactory. Genton (1998a, 2000) uses
generalized least squares for fitting a valid parametric model to variogram esti-
mates. For data with the Gaussian distribution, the mean and variance (Cressie,
1993; Schott, 1997) of 29(h), as well as its correlation structure (Genton, 1998a;
Schott, 1997), are easily computed. These results have been extended to the ellip-
tical distribution (Li, 1987) using characteristic function approach. Genton(2000)
derived the correlation structure of Matheron’s classical variogram estimator un-
der the elliptical distribution with Muirhead’s kurtosis, x = 0. So he obviously
excludes the case of a generalized ¢ distribution where x = 2/(v — 4) (Muirhead,
1982). For a skew normal distribution, Genton et al.(2001) evaluated moments
and correlation structure of Matheron’s classical variogram estimator. We will
extend it to a generalized skew t distribution.

To motivate our approach, more explanation will be given to the generalized
least squares method. Genton (1998a, 2000) proposes to use the method of
generalized least squares with an explicit formula for the covariance structure. It
finds the estimator # minimizing following equation:

F(68) = (27 — 2v(6))'=71(2% — 2v(9)), (1.3)

where 2% = (2%(h;), ...,2%(hg))’ € R%is the random vector with covariance ma-
trix Var(29) = X, with h; = sh/||hj|, i=1,...,d, and 2v(0) = (2y(h;;6),...,
2v(hg;0)) € R? is the vector of a valid parametric variogram. He suggests to use
the matrix ¥ defined by

Y5 = Corr(2y(hy), 29(hy))y(hy; 0)v(hy; 8))/+/ NilNj, (1.4)

where N; is the number of differences at lag h;, and the correlation Corr(29(h;),
24(h;)) is computed with an explicit formula in the multivariate independent
Gaussian case. Therefore, the correlation Corr(2%(h;), 29(h;)) in equation (1.4)
can be improved by using Theorem 2 (will appear) for one dimension and The-
orem 3 (will appear) for d dimension and estimating v and A, which will be
discussed at next section, from the data using maximum likelihood estimation
(Azzalini and Capitanio, 2003).
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We first develop a generalized skew t distribution based on a skew ¢ distri-
bution (Azzalini and Capitanio, 2003). The moments of Matheron’s variogram
estimators for a generalized skew t distribution do not depend on a skewness pa-
rameter a introduced in the next section. The second section present the closed
forms of these moments of the observations in R'. We also extend those to data.
in R%.

2. GENERALIZED SKEW t DISTRIBUTION

A skew t distribution, which was recently developed by Azzalini and Capitanio
(2003), includes a t distribution as a special case. It is related to a skew normal
distribution by the following relationship:

y=p+V 12 (2.1)

where z has a skew normal distribution, SN,(0,Q, a), and V ~ x2/v, indepen-
dent of z. An equivalent interpretation of y is to regard it as a scale mixture of
skew normal variates, with mixing factor V=12, Here Q = wQw = (wrs) is a
full-rank n x n covariance matrix, where

w = diag(wi, -+ ,wn) = diag(wi1, - , Wnn) ', (2.2)

Q) = wlQw™! is the associated correlation matrix, and p,a € R". A skew
normal distribution developed by Azzalini and Dalla Valle (1996), Azzalini and
Capitanio (1999) is defined as follows:

fz(z) = 2¢n(z§“,9)¢(alw—l(z — ), z€ R", (2.3)

where ¢,(z; u, Q) is the n-dimensional normal pdf with mean g and covariance
matrix Q, ®(-) is the N(0,1) cdf and o is a n- dimensional vector. When Z
has the pdf (2.3), we write Z ~ SN,(u,Q,a). When a = 0, (2.3) reduces to
Np(pe,Q) pdf; hence the parameter « is referred to as a skewness or a shape
parameter.

We extend a skew t distribution to a generalized skew t distribution similar
to Arellano-Valle and Bolfarine (1995, an extension of a t distribution to a gen-
eralized t distribution). It can be simply done changing a mixing distribution of
V as follows:

y=p+ V", (2.4)
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where z has the same skew normal distribution in (2.1), and V ~ IG(v/2,/2),
independent of z. Here IG(«, ) denotes an inverse gamma distribution with the
density function
B e=B/v "
fv('l)) = m—v'—c;_'__l,w ere v > O,a > O,and ,@ > 0. (25)
Therefore the pdf of y can be obtained by Appendix Lemma 1 (Azzalini and
Capitanio, 2003) and some simple algebra as follows:

v4n 1/2
£y¥) = 2Gtalyi A ) T («x'w—l(y—m( * ) ;v+n>, (2.6)

Qy + A
where
Qy = (y —w)'Q'(y — p). Here 2.7)
Gtn(y; A v) = ‘lQ|_1/2gn(Qy; A V) (2.8)
I'((v +n)/2)

—(v

= |Q|1/2(ﬂ.)\)n/21‘*(1//2) (1 + QY/)‘) (vtn)/2
is the pdf of a n—dimensional generalized ¢t variate with two parameters v and A.
The notation T} (z; v + n) denotes the scalar t cdf with v +n degrees of freedom.
The notation y ~ GSt,(u, 2, o, A\, v) is used to indicate that y has the pdf (2.6).
Similar to the skew normal distribution, the pdf (2.6) reduces to the one of the
multivariate generalized ¢ distribution t, (g, 2, A, v) when a = 0. Furthermore it
reduces to the one of the multivariate ¢ distribution ¢,(u, 2, v) when a = 0 and
v=A.

We might use characteristic function of a generalized skew ¢ distribution after
developing it. However the characteristic function of the generalized ¢ distribution
(see Fang et al. for the characteristic function of the multivariate ¢ distribution,
1989) is still complicated, we use the simple stochastic relationship between a
skew normal distribution and a generalized skew t distribution instead of using
the characteristic function approach.

Moments of Matheron’s variogram estimator under a skew ¢ distribution up
to matrix trace notation are derived by Kim and Mallick (2003) where Q was
a correlation matrix. However it is straightforward to prove that all moment
formulas are exactly the same when € is changed from a correlation matrix to a
covariance matrix (personal communication with Adelchi Azzalini). Furthermore
an extension to a generalized t distribution results are as follows:
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THEOREM 1. Ify ~ GSto(p,Q, a, A, v), where p, = pyly, then the sample
variogram estimator (1.2) with A = A; = (1/Nn,)A(h;), i = 1,2, satisfies:
(a) E(y' Ay) = 25tr(AQ),
222
(5) Var(y'Ay) = =Be=atr(AQ)2) + =R (tr(40))?,

(c) Cov(y'Ary,y' Azy) = mtT(A19A29)+ -—zﬁtr(Alﬂ)tT(be),

t’r‘(AlﬂAzQ)—}- tT‘(Alﬂ)t’r‘(Azﬂ)

d) C 'A1y,y’ A
(4) Corr(y'Ary,y'day) = Vi (A))+ 5 (tr(A19)2 /tr(429)2)+ 25 (¢r(429))?

where tr(-) denotes the trace of a matrix. The proof follows from Theorem 4, 5,
and 6 of Appendix and the fact that Apy = 0. Intermediate calculation results
for obtaining Theorem 1 are obtained and explained in Appendix. When o = 0
, v — 00, and A — o0, the formulas of Theorem 1 reduce to those obtained in
the multivariate normal case (Cressie, 1993; Schott, 1997; Genton, 1998a). So
A/(v—2) in (a) will be 1. Similarly 2A2/((v—2)(v—4)) in (b) and (c) will be 2 and
2X%/((v—2)%(v—4)) in (b) and (c) will be 0. Furthermore 1/(v—2) in (d) will be 0.
These results for the multivariate normal case can also be appplied to Theorems 2
and 3. When A = v, the formulas of Theorem 1 reduce to those obtained in a skew
t case (Kim and Mallick, 2003). The moments of Theorem 1 do not depend on «,
so the statistical properties of variogram estimates do not depend on a skewness
parameter in a generalized skew t distribution. Thus, they are exactly same as
those of a generalized ¢ distribution. Furthermore the correlation structure, (d),
does not depend on a parameter A\. However these moments depend on a measure
of multivariate kurtosis, 32 n, introduced by Mardia (1970, 1974):

Bon = E{(y — E(y))Var(y) '(y - E(Y))}?

_ 10-145)2 Q-1
- ?1 _3@atlee (27;+4)5;}Q 66+n2+2n ,(2.9)
_ 2 0 pre3
(c‘z(u -2) —aQ 6) (v=2)

where ¢* = [(A\/m)2T((v — 1)/2)]/T(v/2) and § = Qa/((1 + &’Qa)1/2). This
measure is calculated using the results of Theorem 5, and 6 (Appendix), and
(A+buv )™t = A7 — (b/(1 +bv' A7 u))A"luv’A~!, where u and v’ are column
and row vectors, respectively, b is a constant (Henderson and Searle, 1981).
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3. MOMENTS OF VARIOGRAM ESTIMATION IN R!

The spatial design matrix of Matheron’s classical variogram estimator, (1/(n—
h))A(h) of size n x n, is given as follows in one dimensional case (Genton, 1998a)
when data are regularly spaced:

1 1 —n —In-
A(h) = Inn =In-n) (3.1)
n—h n—h\ —I,_p I,
It is built by superposing identity matrices I,_p, of size (n —h) x (n—h). Ilf h <
n/2, the word, superposition, means that two elements located at the same place
are added. Note that if data are irregularly spaced, ”tolerance” regions around

h are often used (Cressie, 1993). There are three possible matrices depending on
h. For example, the spatial design matrix of n = 4 after removing 1/(n — h) are:

( 1-1 0 0 1 0-1 0
-1 2-1 0 0 1 0-1
Al) = 0-1 2-1 , AQ2) = -1 01 0o/’
0 0-1 1 0-1 0 1
[ 100 -1
000 0
A(3) = ) 3.2
\-100 1

We will first derive the explicit formulas for Theorem 1 with an additional
assumption Q = o2I,. Since the spatial design matrix is symmetric and tri-
ridged, we can apply Appendix Lemma 2 (Genton, 1998a) to prove following
theorem.

THEOREM 2. Ify ~ GSt,(p,Q, o, \,v), where py, = pyly and Q = oIy,
then the sample variogram estimator (1.2) with A = A; = (1/Np,)A(h;) = (1/(n—
h))A(hi), i=1,2, satisfy:

(a) E(y'Ay) = 22

v—2
4)\%(3n — 4h)o* N 82204 < n
i —
/ _Jw=-2v-4)(n-h)2 (v-22v-4) 2
(b) Var(y Ay) - : 8A204 8)\20'4 .
otherwise,

-2 —Dn-h) " G2 -9
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v=5§

va 35

FIGURE 3.1 These plots show the dependence of correlation on the lags h1 and hy with n = 20
and different values of v

and for hy < hg

(c) Cov(y' Ary,y' Asy)

422(2n — hy — 2hy)o? 8A204 ot h
+ ? 1t <n
(v—=2)(v—4)(n—-h1)(n—hg) (v—2)2(v—4)
42201 8A2o* therwi ’
+ otherwise
w=-2)v—-4dn—h)) @-2)2wv-—-4)
(d) Corr(y' Ary,y’ Azy)
(v — 2)(2n — h1 — 2h2) + 2(n — h1)(n — h2a) i Ry < n
V(= 2)(3n — 4h1) F 2(n = A2/ (¥ = 2)(3n — 4hy) F 2(n = h2)? 2%
(v —2){2n — hy — 2h2) + 2(n — hy)(n — h2) i n
| VoG ) T3 SR 30 - Dm R T B R T "2 2 g o mithase
- n —ho{(v—2)+2(n~hy)} ) 2 an n
V= 2)(3n - 4h1) + 2(n — h1)2y/ 2(v —2) ¥ 2(n - h2) Fhm<g oond hithaz
1 v—2+42(n—h;) n — hy i h >2
2V —2tn-Rivv—2¥n=-Ffsl n—-h1 =g

The perspective plots and corresponding contour plots of the correlation struc-
ture of the sample variogram estimator are plotted in Figure 3.1, where n = 20,



116 Hyoung-MooN KiMm

different values of v, and the formula (d) of Theorem 2 is used.
These results can be extended to the case where the covariance matrix Q
belongs to the particular family S of matrices:

S ={QIQ = ¢l, + 1,a +al,}, (3.3)

where ¢ € R and a = (aq,--- ,an)/ € R"™ are defined in such a way that Q is
positive definite. We can choose ¢ > 0 such that

1/2
¢ > (n=af) 252 4, (3.4)

to guarantee positive definiteness of . The family S contains the uncorrelated
case (p = 02,a = 0) and the equicorrelation case (p = 1 — p, a = (p/2)1,)
as special cases. Because A(h)1, = 0 Vh and 1,A(h) = O Vh, the results are
exactly same as those of Theorem 2 except o2 is changed to .

4. SIMULATION

By the recommendation of one of the referees, we add a simulation part to
improve reader’s understanding. First, for simplicity, we generate 100 samples of
n = 100 from a generalized skew ¢ distribution with g =0, a =0, A =v =10
and an exponential variogram

v(h,c) = 2 — exp(—h/c) ' (4.1)

when h # 0 and ¢ = 1,5,15. Another reason we are using this simple form is
that the correlation structure of the sample variogram estimator does not depend
on the skewness parameter . Generation of samples is straightforward using a
stochastic representation, (2.4). Parameter c¢ at (4.1) characterizes shape and
sometimes range of the variogram.

Results of the simulations are shown in Table 4.1. For each situation, the
mean of a parameter, with associated standard deviation, is computed over the
100 simulations. On each sample, the variogram is estimated by Matheron’s
classical estimator, denoted by M, and estimation of a parameter c, is done by
generalized least squares(GLSE), (i) using correlation structure of a normal dis-
tribution(Genton, 1998a), (ii) using correlation structure of a generalized skew ¢
distribution, (d) of Theorem 2.

GLSE(i) and GLSE(ii) denote that we use correlation structure of a nor-
mal distribution and a generalized skew t distribution, respectively. We write ¢
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TABLE 4.1 Results of Simulations

Variogram | Parameter | M and GLSE(i) | M and GLSE(ii)
exp(1) c 6.25 2.79
oc 3.76 0.82
ezp(5) ¢ 11.70 8.18
oc 1.54 0.95
exp(15) ¢ 27.29 23.05
oc 5.72 2.87

as the mean of a parameter ¢ and oc as corresponding standard deviation. It is
straightforward to check that superiority of GLSE when we use appropriate corre-
lation structure of the variogram estimator. More precise estimation can be done
by using the highly robust estimator @y, (Genton, 1998b) with GLSE(Genton,
1998a).

5. GENERALIZATION TO DATA IN R¢

We now extend Theorem 2 to data in R%. Genton (1998a) extended the spatial
design matrix to data in R? with d > 2 using Kronecker products. Suppose spatial
data are located on a hypercube with each edge holding n points (a total of n¢
points), then the spatial design matrix is

1 i 1
NEA(h) = Z3?:1 (®k=11[n) ® (N_hlAz(h)> (®(I§=i+lIn) ) (5.1)

where N—l}‘in(h) is given by (3.1) and ® is the Kronecker operator (Schott, 1997).
Using the facts that (A® B)(C®D) = (AC)®(BD), and tr(A® B) = tr(A)tr(B),
Theorem 3 of Genton (1998a) and above Theorem 2, we can prove the following
Theorem. Basically Theorem 3 of Genton(1998a) shows that variance and co-
variance of Matheron’s classical variogram estimator are linear combinations of
one dimensional variances and covariances. Nevertheless, this is not the case for
the correlation.

THEOREM 3. Ify ~ GSt,a(u,Q, o, \,v), where gy, = pyl,a and Q = o%l,q,
then the sample variogram estimator (1.2) with A = A; = (1/Np,)A(h;) and
Np, = dn®Y(n - hy), i=1,2, satisfy:

(a) E(y'Ay) = 22

v—2 7
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v=5I=5

1

v= 35 |= 35

FIGURE 5.1 These plots show the dependence of correlation on the lags hy and hz with n = 20
and different values of v and X for dimension 2. | denote \.

(b) Var(y'Ay)

40" A2(3n — 4h) 2)%(n — h) 2(d—1)(n—h) . . n

No |0— 2 - Dn—h)  w—2°(v—4) " ] Thiz
= 80t 32 X2(n — h) (d—1)(n— h) o

N, | T2 (v—22(—4) p ] otherwise

and fOT‘ hi1 < hg

(c) Cou(y'Ary,y' Asy)

4dn?=204 [n2A%(2n — hy — 2hg)  2nA%(n — h1)(n — hy) ;
— — n—~h if h h
NN [ Ty e - THA- D -h)(—ha)| i hithy<n
4dné~204 [ nA2(n— hy)  2n22(n — hy)(n — ha)
Nuy Ny [(v=2)(v - 9)

(v —2)2(v — 4) +2(d - 1)(n ~ h1)(n - hz)] otherwise

(d) Corr(y' Ary,y' Asy)
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[« if h2 < %

c1 . n
{m if hzza and hi+h2<n
= c ' n !
—ﬁ\z/T—g ’Lf h1<§ and h1+h22n

C2 £oh >n

L VW1/w2 ¥ 2 2

where Ccl = n)\2(1/ - 2)(2n - h1 - 2h2) + 27’!)\2(17, - hl)(n - h2) + Q(d— 1)(1/ - 2)2(1/ -
4)(n—h1)(n— h2), c2 = nA2(v — 2)(n — ha) + 2nA2%(n — hy)(n — hy) +2(d — 1) (v —
2)2(v—4)(n—h1)(n—ha), v; = nX2(v—2)(3n—4h,) + 2n\2(n— h)2 +2(d—1) (v —
2)2(v —4)(n— k)2, andw; = 2(n — b)) [PA2(v — 2) + A2 (n— hy) + (d— 1) (v — 2)?
(v—4)(n—hy)}, i=1,2

Note that correlation structure, (d), does depend on a parameter A even
though it does not depend on A for one dimensional case (see Theorem 1 (d)).
The perspective plots and corresponding contour plots of the correlation structure
of the sample variogram estimator with 2 dimension are plotted in Figures 5.1,
where n = 20, different values of v, A and the formula (d) of Theorem 3 is used.
Comparing this plot with Figure 3.1, we can see the effect of dimension.

6. CONCLUTIONS

Moments of a variogram estimator for a generalized skew t distribution are
calculated. Closed forms of those moments are derived. Surprisingly the correla-
tion structure of a variogram estimator at different spatial lags for a generalized
skew ¢ distribution allowing both skewness and kurtosis is exactly same as that
of a generalized t distribution only allowing kurtosis. So there is no effect of a
skewness parameter when we apply generalized least squares suggested by Genton
(1998a) under the assumption that data follows a generalized skew t distribution.
One practical benefit regarding real data analysis from our approach is that we
still have the explicit formula for the correlation structure of Matheron’s classical
variogram estimator under a generalized t distribution which is not included in
Genton (2000). Since he only considered the elliptical distribution with Muir-
head’s kurtosis, k, 0 (Muirhead, 1982). Muirhead’s kurtosis of a generalized ¢
distribution is k = 2/(v — 4). Therefore we can improve variogram fitting using
the correlation structure of Theorem 2 for one dimension and Theorem 3 for d
dimension under the assumption that data follows a generalized t distribution.
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APPENDIX

We first state two lemmas and derive the first four moments of a multivariate
skew ¢ distribution. These moments are used to calculate the first two moments
of its quadratic forms.

LEMMA 1. IfV ~ Gamma(y,n), then for any a,b € R
Ey {<I>(a\/17+ b)} —P {T < a\/w/n} ,

where T denotes a non-central t variate with 2% degrees of freedom and non-
centrality parameter —b.

LEMMA 2. Suppose U and V are two symmetric, tri-ridged matrices, of size
n X n, gwen by

ai b1
U= b bp
by an
and
C1 d]
V=14 dq
d, Cn

where 1 < p,q < n. We denote a = (a1, ,an), b = (b1,---,by), ¢ =
(c1,-++,¢cn) and d = (d1,--- ,dy) as the ridge values. Then

_Jag P#q
tT(UV)— {ac+2bd,p=q

where - is the usual scalar product.

Azzalini and Capitanio (2003) developed a multivariate skew t distribution
and gave the mean vector and variance matrix for the case when u = 0. Genton
et al. (2001) provided the moments of a skew normal distribution for the case
when g = 0 as follows:
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THEOREM 4. Ifz ~ SN,(0,9Q, ), then the first four moments of z are
(a) My = \/—6 where § = (1+a'na)1/2’
(b) My=E(z®12)=
(c) M3 =FE(z®2' ®2) = \/2[6 ® Q+vec(Q)d' + (I, ®8)Q — (I, ® §)(6 ® )],
(d) My=FE(z®2 ®2Q2)=([2+ Kn)(Q2QQ) + vec(Q)vgc(Q)’.

Here, K, is the commutation matrix associated with an n x n matrix and
its size is actually n? x n?, and ® and vec are the Kronecker operator and the
vec operator, respectively (Schott, 1997). Also it is well-known that

E (Vk/Q) — ()‘/2)16/;1;15(/1;)_ k)/2), where V ~ IG(v/2,)/2). (6.1)

Theorem 5 for the case when p # 0 follows using the identities (2.4), (6.1), and
some well-known properties of Kronecker and vec operators (Schott, 1997).

THEOREM 5. Ify ~ GSt,(u,Q,a, A\, v), then the first four moments of y
are .

_ W/mYPr((v - 1)/2)
I(v/2) ’

(a) My =pu+c'é ,where ¢

A
(b) My = —=Q+ pp' +c"(pd’ +64),
A
(c) Mg:;jEM®u+u®Q+wdm®uq+u®M®u
vec()8' + ([n® 6N -8R @I+ 0@U Qu+pRdQu+p
®{®ﬂ,
(d) My = V—_—5[9®p®u’+u®ﬂ®u’+vec(Q)®u’®u’+u’®ﬂ®u+u

AZ
(v—2)(v—4) [(Zr2
Knn)(Q® Q) + vec(Qvec(Q) ]|+ c* 6o p @puedp' + p®d @ ue
: @
R U +(([n®)NQU +6 QR p+ 8 ®vec(Q) @ pu + (UL
RNu+p 50+ ' ® (vec()8) + 1’ ® (I, 6)N) + p &
RN+ puR5Rvec(Q) +uR (I, R8) -6y -6 86
RREQU—pP' ®RIRI—pR 5048

Quevec() +pRp N +puu Que p +

WHpop i +tpep epue
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Using the first four moments of the random vector y given in Theorem 5, we
can calculate the first two moments of its quadratic form.

THEOREM 6. Ify ~ GSt,(u,Q, e, A\, v) and A, B are two symmetm'c nxn
matrices, then

(0) E(y'Ay) = 25tr(AQ) + p' Ap + 2¢* ' A8,
(5) Var(y'Ay) = g=Be=atr(A)?) + =Rt (tr(40))?
+ 250 (A04) (p+ 2505206) + e 4Gt (AD)

— 2 op ABK A8 + XU (1 A5)2),

2 2
(c) Couv(y'Ay,y'By) = (V_g)’\ﬁtr(AQBQ) + ﬁ%‘mtr(AQ)tr(BQ)
+ 2 4/ (AQB + BQA) (u + 2T we2) 6) + ik [0/ Botr(AQ) + ' Abtr(BR)]

— 20 (8 Ay’ BS + p' AS8' BS + X137 A6 ' BS),

where tr(-) denotes the trace of a matrix. The proof rests on Theorem 5 and
the following relations (Schott, 1997):

E(y'Ay) = tr(AM,), Cou(y' Ay,y’ By) = tr((A® B)M,) — tr(AMy)tr(BM,),
tr(AB) = tr(BA), tr(A® B) = tr(A)ir(B),

and tr(Kpn(A ® B)) = tr(AB) = (vec(4')) vec(B).
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