PLASTIC STRAIN RATIOS AND PLANAR ANIOSOTROPY OF AA5182/POLYPROPYLENE/AA5182 SANDWICH SHEETS

  • KIM K. J. (CAE Team, Ssang Yong Motor Company)
  • 발행 : 2005.06.01

초록

In order to analyze the sheet drawability, the measurement of the plastic strain ratio was carried out for the 5182 aluminum alloy sheets in which were cold rolled without lubrication and subsequent recrystallization annealing. The average plastic strain ratio of the 5182 aluminum sheets was 1.50. It was considered that the higher plastic strain ratio was resulted from the ND//<111> component evolved during rolling and maintained during annealing. The AA5182/polypropylene/AA5182 (AA/PP/AA) sandwich sheets of the 5182 aluminum alloy skin sheet and the polypropylene core sheet with high formability have been developed for application for automotive body panels in future light weight vehicles with significant weight reduction. The AA/PP/AA sandwich sheets were fabricated by the adhesion of the core sheet and the upper and lower skin sheets. The AA/PP/AA sandwich sheet had high plastic strain ratio (1.58), however, the planar anisotropy of the sandwich sheet was little changed after fabrication. The optimum combination of directionality of the upper and lower skin sheets having high plastic strain ratio and low planar anisotropy was calculated theoretically and an advanced process for producing the sandwich sheets with high plastic strain ratio was proposed. The developed sandwich sheets have a high average plastic strain ratio of 1.55 and a low planar anisotropy of 0.17, which was improved more by 3.2 times than that of 5182 aluminum single sheet.

키워드

참고문헌

  1. Asbeck, H. O. and Mecking, H. (1978). Influence of friction and geometry of deformation on texture inhomogeneities during rolling of Cu single crystals as an example. Mater. Sci. Eng., 34,111-119 https://doi.org/10.1016/0025-5416(78)90041-1
  2. Baeck, S. M., Seok, H. K., Lee, J. C. and Oh, K. H. (2001). Texture Analysis of Aluminum Plate Produced by ECAP, 2nd LIMAT, II, 621-626
  3. Cho, S.-S., Han, B. K., Chang, H. and Kim, B. K. (2005). Effects of forming process on sealing performance of full-bead of MLS gasket: Finite element analysis approach. Int. J Automotive Technology 6, 2, 191-196
  4. Choi, C. H. and Lee, D. N. (1995). Shear texture formation in cold rolled aluminum and its recrystallization texture. Proc. of the 16th Riso Inter. Symp. of Mater. Sci., Denmark, 289-294
  5. Choi, C. H., Kwon, J. W., Oh, K. H. and Lee, D. N. (1997). Analysis of deformation texture inhomogeneity and stability condition of shear components in f.c.c. Metals, Acta. Metall., 45, 12, 5119-5128
  6. Hasegawa, K., Fujita, T., Araki, K., Mitao, S., Osawa, K., Niikura, M. and Ohori, K. (1998). Effect of intermediate annealing on the R-value of Al-Mg alloy sheet. Mater. Sci. and Eng., A257, 204-214
  7. Holscher, M., Raabe, D. and Lucke, K. (1994). Relationship between rolling textures and shear textures in F.C.C. and B.C.C. metals. Acta Metall. Mater. 42, 3, 879-886 https://doi.org/10.1016/0956-7151(94)90283-6
  8. Hu, J., Ikeda, K. and Murakami, T. (1996). Effect of single roller driving cold-rolling on texture and formability of pure aluminum sheet. J Japan Inst. Metals 60, 11, 1130-1135 https://doi.org/10.2320/jinstmet1952.60.11_1130
  9. Hutchinson, W. B. (1989). Recrystallization textures in iron resulting from nucleation at grain boundaries. Acta Mater. 37, 4,1047-1056 https://doi.org/10.1016/0001-6160(89)90101-6
  10. Jeong, H. T., Hong, S. H. and Lee, D. N. (1999). Variation of plastic strain ratios of brass sheet with tensile strain. Textures and Microstructures, 32, 355-367 https://doi.org/10.1155/TSM.32.355
  11. Jeong, H. T., Um, K. K., Lee, D. N. and Szpunar, J. A. (2000). Variation of shear texture with shear to effective strain ratio in rolled FCC metal sheet. THERMEC 2000, Symp. on Textures in Mater. - Int. Conf on Proc. and Manuf of Adv. Ma., Las Vegas, NV, USA, Nov., 4-8
  12. Kamijo, T. and Fukutomi, H. (1995). Improvement of lankford value in Al-Mg alloys by the formation of (111) recrystallization texture. Proc. of the 16th Rise Inter. Symp. of Mater. Sci., Ed. N. Hansen, D. Juul, Y. L. Kiu and B. Ralph, Denmark, 377-382
  13. Kamijo, T., Adachihara, H. and Fukutomi, H. (1993). Formation of a (001)[100] deformation structure in aluminum single crystals of an S-Orientation. Acta Mater. 41, 3, 975-985. https://doi.org/10.1016/0956-7151(93)90032-N
  14. Kamijo, T., Adachihara, H., Fukutomi, H. and Aemoudt, E. (1992). Development of cube texture in aluminum single crystals of a stable orientation. Acta Mater. 40, 4,693-698 https://doi.org/10.1016/0956-7151(92)90010-C
  15. Kamijo, T., Matukawa, K. Y. and Noguchi, N. (1972). Rolling and annealing texture in the outer layer of rolled aluminum sheet. J of Jap. Inst. Metals., 36, 669-673 https://doi.org/10.2320/jinstmet1952.36.7_669
  16. Kim, K. H. (1999). Textures and plastic strain ratios of asymmetrically rolled aluminum alloy sheets. Ph.D. Dissertation of Seoul National Univ., 136-150
  17. Kim, K. J. (2005). Texture evolution of AA5182 aluminum alloy rolled sheets after annealing. J of Mater. Sci. Letter, to be Published
  18. Kim, K. J., Kim, D., Choi, S. H., Chung, K., Shin, K. S., Barlat, F., Oh, K. H. and Youn, J. R. (2003). Formability of AA5182/Polypropylene/ AA5182 sandwich sheets. J of Mater. Proc. Tech. 139, 113, 1-7 https://doi.org/10.1016/S0924-0136(03)00173-0
  19. Lee, C. S. and Duggan, B. J. (1991). A simple theory for the development of inhomogeneous rolling textures. Metall. Trans. A, 22A, 2637-2643
  20. Lee, C. S., Smallman, R. E. and Duggan, B. J. (1994). Effect of rolling geometry and surface friction on cube texture formation. Mater. Sci. and Tech., 10, 149-154 https://doi.org/10.1179/026708394790163780
  21. Lee, D. N. (1985). Theoretical dependence of limiting drawing ratio on plastic strain ratio. Proc. of the 7th Inter. Conf on the Strength, of Metals and Alloys, Montreal, Canada, 971-976
  22. Lee, D. N. and Oh, K. H. (1985). Calculation of plastic strain ratio from the texture of cubic metal sheet. J of Mater. Sci., 20, 3111-3118 https://doi.org/10.1007/BF00545175
  23. Lee, D. N., Kim, K. H., Choi, C. H. and Kang, H. G. (1997). Improvement in formability of aluminum alloy sheets for use of automobiles. Proc. Inter. Conf. on Adv. Auto. Mater., Beijing China, 67-76
  24. Lequeu, P. and Jonas, J. J. (1988). Modeling ofthe plastic anisotropy of textured sheet. Metall. Trans., 19A, 105-120
  25. Major, B. (1992). Texture, microstructure and stored energy inhomogeneity in cold rolled commercial purity aluminum and copper. Mater. Sci. Tech., 8, 510-515 https://doi.org/10.1179/mst.1992.8.6.510
  26. Park, J. J. (1999). Predictions of texture and plastic anisotropy developed by mechanical deformation in aluminum sheet. J of Mater. Proc. Tech., 87,146-153 https://doi.org/10.1016/S0924-0136(98)00338-0
  27. Pithan, C., Hashimoto, T., Kawazoe, M., Nagahora, J. and Higashi, K. (2000). Microstructure and texture evolution in ECAE processed A5056. Mater. Sci. Eng., A280, 62-68 https://doi.org/10.1016/S0921-5093(99)00657-7
  28. Reid, C. N. (1975). Deformation Geometry for Materials Scientists. Pergamon Press. 111-178
  29. Rhee, M. H., Ryu, Y. M., Kim, K. J., Shin, K. S., Kim, J. H. and Lee, K. N. (2000). Development of application technique of aluminum sandwich sheets for automotive hood. FISITA 2000, Seoul, Korea, June 12-15
  30. Saito, Y., Utsunomiya, H., Suzuki, H. and Sakai, T. (2000). Improvement in the R-value of aluminum strip by a continuous shear deformation process. Scripta Mater., 42,1139-1144 https://doi.org/10.1016/S1359-6462(00)00349-3
  31. Sakai, T., Hamada, S. and Saito, Y. (2001). Improvement of the R-value in 5052 aluminum alloy sheets having through-thickness shear texture by 2-pass single-roll drive unidirectional shear rolling. Scripta Mater., 44, 2569-2573 https://doi.org/10.1016/S1359-6462(01)00932-0
  32. Sakai, T., Saito, Y. and Kato, K. (1987). Recrystallization and texture formation in high speed hot rolling of austenitic stainless steel. Trans. ISIJ, 27, 520-525 https://doi.org/10.2355/isijinternational1966.27.520
  33. Sakai, T., Saito, Y., Hirano, K. and Kato, K. (1988). Deformation and recrystallization behavior of low carbon steel in high speed hot rolling. Trans. ISIJ, 28, 1028-1035 https://doi.org/10.2355/isijinternational1966.28.1028
  34. Sakai, T., Saito, Y., Matsuo, M. and Kawasaki, K. (1991). Inhomogeneous texture formation in high speed hot rolling of ferritic stainless steel. ISIJ Inter., 31. 86-94 https://doi.org/10.2355/isijinternational.31.86
  35. Shin, K. S., Kim, K. J., Choi, S. W. and Rhee, M. H. (1999). Mechanical properties of aluminum/polypropylene/aluminum sandwich sheets. Metals and Mater. 5, 6,613-618 https://doi.org/10.1007/BF03026313
  36. Truszkowski, W., Krol, J. and Major, B. (1980). Inhomogeneity of rollong texture in fcc metals. Metall. Trans. A, 11A, 749-758
  37. Truszkowski, W., Krol, J. and Major, B. (1982). On penetration of shear texture into the rolled aluminum and copper. Metall. Trans. A, 13A, 665-669
  38. Veenstra, E. W. (1993). Aluminum-plastic-aluminum sandwich sheet for maximum weight reduction in body panels. SAE Paper 930706, 1-10