AB INITIO CALCULATIONS OF STRONGLY CORRELATED ELECTRONS: ANTIFERROMAGNETIC GROUND STATE OF $UO_2$

  • Published : 2005.06.01

Abstract

We have performed the density functional theory calculations of $UO_2$ using the spin-polarized generalized gradient approximation (SP-GGA) and the SP-GGA+U approach. The SP-GGA+U approach correctly predicts the insulating electronic structure with antiferromagnetic ordering, but the SP-GGA calculations predict metallic behavior. The cohesive properties obtained from the SP-GGA+U calculations are in good agreement with the available experimental results and previous calculations. The spin-polarized local density of states shows that the antiferromagnetic ordering of $UO_2$ is governed by 5f orbitals of uranium ion. Our calculations demonstrate that the strong correlation of U 5f electrons should be taken into account for a reliable description of $UO_2$ physics.

Keywords

References

  1. Y. Baer and J. Schoenes, 'Electronic Structure and Coulomb Correlation Energy in $UO_2$, Single Crystal', Solid State Cornrnun. 33, 885 (1980) https://doi.org/10.1016/0038-1098(80)91210-7
  2. L. Lynds, 'Preparation of Stoichiometric $UO_2$ by Thermal Decomposition of$UO_2I_2$', J. Inorg. Nucl. Chem. 24, 1007 (1962) https://doi.org/10.1016/0022-1902(62)80219-X
  3. A.P. Cracknell and M.R. Daniel, 'Magnetic Point Groups Selection Rules and Antiferromagnetic Phase Transition in $UO_2$', Proc. Phys. Soc. 92, 705 (1967) https://doi.org/10.1088/0370-1328/92/3/321
  4. B. W. Veal, and D. J. Lam, 'X-ray Photoelectron Studies of Thorium, Uranium, and Their Dioxides', Phys. Rev. B 10,4902 (1974) https://doi.org/10.1103/PhysRevB.10.4902
  5. J. Verbist, J. Riga, J. J. Pireaux, and R. Caudano, 'X-ray Photoelectron spectra of uranium and uranium oxides. Correlation with the half-life of $^{235}U^m$', J. Electron Spectrosc. Relat. Phenom. 5, 193 (1974) https://doi.org/10.1016/0368-2048(74)85011-5
  6. L. E. Cox, 'XPS evidence for 5f bonding participation in $UO_2$', J. Electron Spectrosc. Relat. Phenom. 26,167 (1982) https://doi.org/10.1016/0368-2048(82)85064-0
  7. P. J. Kelly and M. S. S. Brooks, 'Electronic Structure and Ground -state Properties of the Actinide Dioxide', J. Chern. Soc. Faraday Trans. II, 83,1189 (1987)
  8. P. Hohenberg and W. Kohn, 'Inhomogeneous Electron Gas', Phys. Rev, 136, B664 (1964) https://doi.org/10.1103/PhysRev.136.B864
  9. W. Kohn and L. J. Sham, 'Self-Consistent Equations Including Exchange and Correlation Effects', Phys. Rev. 140, B1133 (1965) https://doi.org/10.1103/PhysRev.140.A1133
  10. D. M. Ceperley and B. J. Alder, 'Ground State of Electron Gas by a Stochastic Method', Phys. Rev. Lett. 45, 566 (1980) https://doi.org/10.1103/PhysRevLett.45.566
  11. T. Petit et al., 'Cohesive Properties of$UO_2$', Phil. Mag. B 73, 893 (1996) https://doi.org/10.1080/01418639608240321
  12. S. L. Dudarev, D. Nguyen Manh, and A. P. Sutton, 'Effect of Mott-Hubbard correlations on the Electronic Structural Stability of Uranium Dioxide', Phil. Mag. B 75, 613 (1997) https://doi.org/10.1080/13642819708202343
  13. V.I. Anisimov, J. Zaanen, and O. K. Andersen, 'Band Theory and Mott Insulators: Hubbard U instead of Stoner I', Phys. Rev. B 44, 943 (1991) https://doi.org/10.1103/PhysRevB.44.943
  14. J. P. Perdew and Y. Wang, 'Accurate and Simple analytic Representation of the Electron-Gas Correlation Energy', Phys. Rev. B 45, 13244 (1992) https://doi.org/10.1103/PhysRevB.45.13244
  15. K. N. Kudin et al., 'Hibrid Density-Functional Theory and the Insulating Gap of $UO_2$', Phys. Rev. Lett. 89, 266402 (2002) https://doi.org/10.1103/PhysRevLett.89.266402
  16. R. Laskowski, G. K. H. Madsen, P. Blaha, and K. Schwarz, 'Magnetic Structure and Electronic-Field Gradients of Uranium Dioxide: An ab initio study', Phys. Rev. B 69, 140408(R) (2004) https://doi.org/10.1103/PhysRevB.69.140408
  17. I.V. Solovyev, P.H. Dederichs, and V.I. Anisimov, 'Corrected Atomic Limit in the Local-Density Approximation and the Electronic Structure of d impurities in Rb', Phys. Rev. B 50,16861 (1994) https://doi.org/10.1103/PhysRevB.50.16861
  18. A.I. Liechtenstein, V.I. Anisimov, and J. Zaanen, 'Density -Functional Theory and Strong Interactions: Orbital ordering in Mott-Hubbard Insulator', Phys. Rev. B 52, R5467 (1995) https://doi.org/10.1103/PhysRevB.52.R5467
  19. G. Kresse and J. Hafner, 'Ab Initio Molecular Dynamics for Liquid Metals', Phys. Rev. B 47, RC558 (1993) https://doi.org/10.1103/PhysRevB.47.558
  20. G. Kresse and J. Furthmuller, 'Efficient Iterative Schemes for Ab initio Total-Energy Calculations Using a Plane-Wave Bases Set', Phys. Rev. B 54, 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
  21. P.E. Blochl, 'Projector Augmented-Wave Method', Phys. Rev. B 50, 17953 (1994) https://doi.org/10.1103/PhysRevB.50.17953
  22. G. Kresse and J. Joubert, 'From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method', Phys. Rev. B 59, 1758 (1999) https://doi.org/10.1103/PhysRevB.59.1758
  23. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, 'Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study', Phys. Rev. B 57, 1505 (1998) https://doi.org/10.1103/PhysRevB.57.1505
  24. S.L. Dudarev, G.A Botton, S.Y. Savrasov, Z. Szotek, W. M. Temmerman, and A.P. Sutton, 'Elctronic Structure and Elastic Properties of Strongly Correlated Metal Oxides form First Principles: LSDA+U, SIC-LSDA and EEES Study of $UO_2$ and NiO', Phys. Stat. Sol. 166,429 (1998) https://doi.org/10.1002/(SICI)1521-396X(199803)166:1<429::AID-PSSA429>3.0.CO;2-F
  25. D. G. Martin, High Temp.-High Pressures 21,13 (1989)
  26. Landolt-Bornstein, 'Magnetic and other properties of oxides and related compounds. Part C Hexagonal ferrites, special lanthanide and actinide compounds', Ed. K.-H. Hellwege and A.M. Hellwege, Vol. 12, Numerical Data and Functional Relationships in Science and Technology. New series. Group III: Crystal and Solid State Physics., SpringerVerlag, Berlin(1982)
  27. S. Xia and J.C. Krupa, 'Calculated variation trends across the actinide dioxide series: electronic structure and charge transfer transitions', J. Alloys Compd. 307, 61 (2000) https://doi.org/10.1016/S0925-8388(00)00838-0
  28. C. Gunnarsson, D. D. Sarma, F. U. Hillebrecht, and K. Schonhammer, 'Electronic structure of the light actinide oxides from electron spectroscopy', J. Appl. Chem. 63, 3676 (1988) https://doi.org/10.1063/1.340683