FUZZY CONVERGENCE THEORY - II

K. K. MONDAL AND S. K. SAMANTA

ABSTRACT. In this paper convergence of fuzzy filters and graded fuzzy filters have been studied in graded L-fuzzy topological spaces.

0. INTRODUCTION

This paper is the continuation of our earlier paper (Mondal & Samanta [10]) where convergence of fuzzy nets has been studied. In this paper we deal with the convergence of fuzzy filters. In 1979 a theory of convergence of fuzzy filters was developed by Lowen [9] for laminated spaces and afterwards it was extended to arbitrary fuzzy (Chang) spaces by Warren [13]. In 1995 Gahler [6, 7] introduced an idea of graded fuzzy filter in lattice valued setting (which he called L-fuzzy filter) and studied its convergence in Chang fuzzy topological spaces. Later on in the year of 1999 Burton, Muraleetharan & Garcia [1, 2] considered another type of graded fuzzy filter named as generalized filter (g-filter) by relaxing a condition imposed by Gahler [6, 7] but restricted themselves in I-fuzzy setting where $I = [0, 1]$ and studied relations among prime prefilters, prime g-filters and ultrafilters.

In this paper we study the convergence of both crisp fuzzy filters and graded fuzzy filters in L-fuzzy setting, where the underlying fuzzy topological space is a graded L-fuzzy topological space of the type as considered in Chattopadhyay, Hazra & Samanta [4], Höhle [8], and Šostak [12].

In Section 2 we study the graded convergence of Warren type fuzzy filters (cf. Warren [13]) and investigate its relation with the graded convergence of associated fuzzy nets.

Received by the editors September 24, 2004 and, in revised form, February 5, 2005.
2000 Mathematics Subject Classification. 54A40, 03E72.
Key words and phrases. fuzzy filter, g-filter, graded convergence, fuzzy topology.
The present work was supported by Special Assistance Programme (SAP) of UGC, New Delhi, India [Grant No. F. 510/8/DRS/2004 (SAP-I)].

In Section 3 we deal with the convergence of g-filters. In doing so we have established decomposition theorem involving the convergence of a g-filter with the convergence of a family of Warren type fuzzy filters. Relationship between the convergence of g-filters and gp-mappings has been studied.

1. Notation and Preliminaries

In this paper X denotes a nonempty set; unless otherwise mentioned, L denotes a completely distributive order dense complete lattice with an order reversing involution ι whereas $L_0 = L \setminus \{0\}$. Let 0 and 1 denote respectively the least and the greatest elements of L. Let L^X be the collection of all L-fuzzy subsets of X and $\text{Pt}(L^X)$ the set of all L-fuzzy points of X. $M(L)$ denotes the set of all molecules of L whereas $M(L^X)$ denotes the set of all molecule points of L^X. By $\tilde{0}$ and $\tilde{1}$ we denote the constant L-fuzzy subsets of X taking values 0 and 1 respectively. For $p_x \in \text{Pt}(L^X)$ and $A, B \in L^X$ we say $p_x \notq A$ if $p_x \notq A'$ and $A \notq B$ if $A \notq B'$. For other notations we follow Liu [14].

Definition 1.1 (Šostak [12]). A function $\tau : L^X \to L$ is called an L-fuzzy topology on X if it satisfies the following conditions:

- (O1) $\tau(\tilde{0}) = \tau(\tilde{1}) = 1$,
- (O2) $\tau(A_1 \land A_2) \geq \tau(A_1) \land \tau(A_2)$, for $A_1, A_2 \in L^X$, and
- (O3) $\tau(\bigvee_{i \in \Delta} A_i) \geq \bigwedge_{i \in \Delta} \tau(A_i)$ for any $\{A_i\}_{i \in \Delta} \subset L^X$.

The pair (X, τ) is called an L-fuzzy topological space and τ is also called a gradation of openness on X.

Definition 1.2 (Šostak [12]). A function $\mathcal{F} : L^X \to L$ is called an L-fuzzy co-topology of X if it satisfies the following conditions:

- (C1) $\mathcal{F}(\tilde{0}) = \mathcal{F}(\tilde{1}) = 1$,
- (C2) $\mathcal{F}(A_1 \lor A_2) \geq \mathcal{F}(A_1) \land \mathcal{F}(A_2)$, for $A_1, A_2 \in L^X$, and
- (C3) $\mathcal{F}\left(\bigwedge_{i \in \Delta} A_i\right) \geq \bigvee_{i \in \Delta} \mathcal{F}(A_i)$ for any $\{A_i\}_{i \in \Delta} \subset L^X$.

The pair (X, \mathcal{F}) is called an L-fuzzy co-topological space and \mathcal{F} is also called a gradation of closedness on X.

Definition 1.3 (Mondal & Samanta [10]). Let (X, τ) be an L-fuzzy topological space and let $Q : \text{Pt}(L^X) \times L^X \to L$ be a mapping defined by

$$Q(p_x, A) = \bigvee \{\tau(U); p_x \notq U \subseteq A\}.$$
Then Q is said to be a *gradation* of \mathcal{q}-neighborhoodness in (X, τ).

Definition 1.4 (Mondal & Samanta [10]). Let (X, τ) be an L-fuzzy topological space and let $Q : \text{Pt}(L^X) \times L^X \rightarrow L$ be a mapping defined by

$$Q(p_x, A) = \bigvee \{\tau(U) ; \ p_x \mathcal{q} U \subseteq A\}.$$

Then Q is said to be a *gradation* of \mathcal{q}-neighborhoodness.

Proposition 1.5 (Mondal & Samanta [10]). Let Q be a gradation of \mathcal{q}-neighborhoodness in an L-fuzzy topological space (X, τ). Then

(QN1): $\forall \ p_x \in \text{Pt}(L^X), \ Q(p_x, \bar{1}) = 1, \ Q(p_x, \bar{0}) = 0$.

(QN2): $Q(p_x, A) \leq Q(p_x, B)$ if $A, B \in L^X, \ A \subseteq B$.

(QN3): $\forall \ p_x \in \text{Pt}(L^X)$ and $\forall \ A, B \in L^X, \ Q(p_x, A \wedge B) = Q(p_x, A) \wedge Q(p_x, B)$.

(QN4): $Q(p_x, A) \not\leq k$ implies that there exists a $B_p \in L^X$ such that $p_x \mathcal{q} B_p \subseteq A$ and

$$\wedge_{r_y \mathcal{q} B_p} Q(r_y, B_p) \not\leq k.$$

Proposition 1.6 (Mondal & Samanta [10]). Let $Q : \text{Pt}(L^X) \times L^X \rightarrow L$ be a mapping satisfying (QN1)–(QN3) of Proposition 1.5. Let $\bar{\tau} : L^X \rightarrow L$ be defined by $\bar{\tau}(A) = \wedge_{p_x \mathcal{q} A} Q(p_x, A)$. Then $(X, \bar{\tau})$ forms an L-fuzzy topological space. If further the condition (QN4) of Proposition 2.4 is satisfied by Q then the mapping $\bar{Q} : \text{Pt}(L^X) \times L^X \rightarrow L$ defined by

$$\bar{Q}(p_x, A) = \bigvee \{\bar{\tau}(U) ; \ p_x \mathcal{q} U \subseteq A\}$$

is identical with Q.

Proposition 1.7 (Mondal & Samanta [10]). Let Q be a gradation of \mathcal{q}-neighborhoodness in an L-fuzzy topological space (X, τ) and $\bar{\tau} : L^X \rightarrow L$ be defined by $\bar{\tau}(A) = \bigvee_{p_x \mathcal{q} A} Q(p_x, A)$ then $\bar{\tau}$ is an L-fuzzy topology on X and $\bar{\tau} = \tau$.

Definition 1.8 (Mondal & Samanta [10]). Let (X, τ) be an L-fuzzy topological space and $e \in \text{Pt}(L^X)$. The \mathcal{q}-neighborhood system of the fuzzy point e with respect to the Chang fuzzy topology $\tau_\mathcal{q}$, denoted by $\bar{Q}_\mathcal{q}(e)$, is defined by $\bar{Q}_\mathcal{q}(e) = \{U \in L^X ; \ \exists V \in \tau_\mathcal{q} \text{satisfying } e \mathcal{q} V \subseteq U\}$.

Definition 1.9 (Mondal & Samanta [10]). Let (X, τ) be an L-fuzzy topological space and $N : \text{Pt}(L^X) \times L^X \rightarrow L$ be a mapping defined by

$$N(p_x, A) = \bigvee \{\tau(U) ; \ p_x \in U \subseteq A\}.$$

Then N is said to be a *gradation of neighborhoodness* in (X, τ).

Definition 1.10. Let \((X, \tau)\) be an \(L\)-fuzzy topological space and \(e \in \text{Pt}(L^X)\). The neighborhood system of the fuzzy point \(e\) with respect to the Chang fuzzy topology \(\tau_r\), denoted by \(\tilde{N}_r(e)\), is defined by
\[
\tilde{N}_r(e) = \{U \in L^X; \ \exists V \in \tau_r \text{ satisfying } e \in V \subseteq U\}.
\]

Definition 1.11 (Liu [14]). Let \(L\) be a complete lattice. Define a relation \(\ll\) in \(L\) as follows: \(\forall a, b \in L, \ a \ll b\) if and only if \(\forall S \subset L, \ \sqrt{S} \geq b \Rightarrow \exists s \in S\) such that \(s \geq a, \ \forall a \in L\), denote \(\beta(a) = \{b \in L; b \ll a\}\), \(\beta^0(a) = M(\beta(a))\).

Definition 1.12 (Chattopadhyay, Hazra & Samanta [4]). Let \((X, \tau)\) and \((Y, \delta)\) be two \(L\)-fuzzy topologies and \(f : X \to Y\) be a mapping. Then \(f\) is called a gradation preserving map (gp-map) if for each \(B \in L^Y, \ \delta(B) \leq \tau(f^{-1}(B))\).

2. Fuzzy Filter and its Convergence

Definition 2.1. Let \(X\) be a nonempty crisp set. A fuzzy filter on \(L^X\) is a non-empty family \(\mathcal{G}\) of \(L\)-fuzzy subsets of \(X\) such that
(i) \(\tilde{\varnothing} \notin \mathcal{G}\),
(ii) \(\mathcal{G}\) is closed under finite intersection, and
(iii) \(\forall A, B \in L^X, \ \text{if } B \in \mathcal{G}\) and \(B \subseteq A\) then \(A \in \mathcal{G}\).

Example 2.2. Let \((X, \tau)\) be an \(L\)-fuzzy topological space with \(\tau\) as a gradation of openness on \(X, \ e \in M(L^X)\). Then, for every \(r \in L_0, \ \tilde{Q}_r(e)\) and \(\tilde{N}_r(e)\) are fuzzy filters on \(L^X\).

Example 2.3. Let \(X\) be an infinite crisp set then for each \(r \in L_0\) the collection \(\{A \in L^X; \ A'_r\text{'cut of } A\}\) is a fuzzy filter on \(L^X\) where \(A'_r\) is the \(r\)-cut of \(A\).

Definition 2.4. Let \((X, \tau)\) be an \(L\)-fuzzy topological space \(\mathcal{G} \subset L^X\) be a fuzzy filter on \(L^X, \ e \in \text{Pt}(L^X)\). Then \(e\) is called a cluster point of \(\mathcal{G}\) of upper grade \(l\) (respectively, lower grade \(k\)), denoted by \(\mathcal{G} \uparrow l e\) (respectively, \(\mathcal{G} \downarrow k e\)), if
\[
l' = \bigwedge \{r \in L_0; \ U \cap A \neq \tilde{\varnothing}, \ \forall U \in \tilde{Q}_r(e) \text{ and } A \in \mathcal{G}\}
\]
(respectively, if
\[
k' = \bigvee \{r \in L_0; \ \exists U \in \tilde{Q}_r(e) \text{ and } \exists A \in \mathcal{G}\text{ such that } A \cap U = \tilde{\varnothing}\}).
And \(e \) is called a **limit point** of \(G \) of upper grade \(l \) (respectively, lower grade \(k \)), denoted by \(G \rightarrow^l e \) (respectively, \(G \rightarrow_k e \)), if \(l' = \bigwedge \{ r \in L_0 ; \ \tilde{Q}_r(e) \subseteq G \} \) (respectively, \(k' = \bigvee \{ r \in L_0 ; \ \tilde{Q}_r(e) \not\subseteq G \} \)).

Proposition 2.5. For any fuzzy filter \(G \) in an \(L \)-fuzzy topological space \((X, \tau)\), we have the following properties.

(i) \(G \preceq^l e \) and \(G \preceq_k e \Rightarrow k \neq l \).

(ii) \(G \rightarrow^l e \) and \(G \rightarrow_k e \Rightarrow k \neq l \).

Proof. (i) Let \(U = \{ r \in L_0 ; \ \forall \ U \in \tilde{Q}_r(e) \text{ and } V \in G, \ U \cap V \neq \emptyset \} \) and \(V = \{ r \in L_0 ; \ \exists \ U \in \tilde{Q}_r(e), \ V \in G, \ U \cap V = \emptyset \} \). Then obviously \(U \cap V = \emptyset \) and \(U \cup V = L_0 \).

Also from the definition of limit points of upper grade and lower grade of a fuzzy filter we have \(l' = \bigwedge U \) and \(k' = \bigvee V \). If \(\bigwedge U > \bigvee V \) then there exists \(m \in L_0 \) such that \(\bigwedge U > m > \bigvee V \Rightarrow m \not\in U \) and \(m \not\in V \), which is contradictory to the fact that \(U \cup V = L_0 \). So, \(l' = \bigwedge U > \bigvee V = k' \) is not possible. This implies \(k \neq l \).

(ii) Similar to (i). \(\square \)

Proposition 2.6. If \(L \) be an order dense chain then, in an \(L \)-fuzzy topological space \((X, \tau)\), we have the following properties.

(i) \(G \preceq^l e \) and \(G \preceq_k e \Rightarrow k = l \).

(ii) \(G \rightarrow^l e \) and \(G \rightarrow_k e \Rightarrow k = l \).

Proof. (i) As in Proposition 2.5, if we consider the partitions \(U \) and \(V \) of \(L_0 \) and \(l' = \bigwedge U, k' = \bigvee V \) then we have \(k \leq l \). If possible let \(k < l \) then \(k' > l' \Rightarrow \exists m \in L_0 \) such that \(k' > m > l' \Rightarrow V > m > \bigwedge U \Rightarrow m \in V \text{ and } m \in U \), which is contradictory to the fact that \(U \cap V = \emptyset \). Hence \(k \neq l \).

(ii) Similar to (i) \(\square \)

Note 2.7. If in addition \(L \) is a chain then in the \(L \)-fuzzy topological space \((X, \tau)\), as there is no difference between \(G \preceq^l e \) and \(G \preceq_l e \) so they will be commonly denoted by \(G \preceq (l) e \). Similarly, \(G \rightarrow^l e \) and \(G \rightarrow_l e \) will be commonly denoted by \(G \rightarrow (l) e \).

Proposition 2.8. Let \((X, \tau)\) be an \(L \)-fuzzy topological space with \(\tau \) as a gradation of openness on \(X \), \(G \subseteq L^X \) be a fuzzy filter on \(L^X \), \(e \in \text{Pt}(L^X) \). Then, for \(k \in L \), we have

(i) \(G \rightarrow^k e \Rightarrow G \preceq^l e \text{ for some } l \geq k \),

(ii) \(G \preceq^k e \geq f \Rightarrow G \preceq^l f \text{ for some } l \geq k \),

(iii) \(G \rightarrow^k e \geq f \Rightarrow G \rightarrow^l f \text{ for some } l \geq k \),
(iv) \(G \otimes_k e \Rightarrow G \rightarrow^l e \) for some \(l \leq k \),

(v) \(G \otimes_k e \leq f \Rightarrow G \otimes_l f \) for some \(l \leq k \), and

(vi) \(G \rightarrow_k e \leq f \Rightarrow G \rightarrow^l f \) for some \(l \leq k \).

The proof is straightforward.

Definition 2.9. Let \((X, \tau)\) be an \(L\)-fuzzy topological space and \(G, H\) be any two fuzzy filters on \(L^X\). Say \(H\) is finer than \(G\) or subfilter of \(G\), or say \(G\) is coarser than \(H\) if \(G \subseteq H\).

Proposition 2.10. Let \((X, \tau)\) be an \(L\)-fuzzy topological space and \(G, H\) be fuzzy filters on \(L^X\), \(H\) be coarser than \(G\), \(e \in \text{Pt}(L^X)\). Then, for \(k \in L\), we have

(i) \(H \rightarrow^k e \Rightarrow G \rightarrow^l e \) for some \(l \geq k \),

(ii) \(G \otimes_k e \Rightarrow H \otimes^l e \) for some \(l \geq k \),

(iii) \(H \rightarrow^k e \Rightarrow G \rightarrow^l e \) for some \(l \leq k \), and

(iv) \(G \otimes_k e \Rightarrow H \otimes^l e \) for some \(l \leq k \).

Proposition 2.11. Let \((X, \tau)\) be an \(L\)-fuzzy topological space, \(G\) be a fuzzy filter on \(L^X\), \(\Delta\) be the collection of all subfilters of \(G\), \(e \in \text{Pt}(L^X)\). Then we have

(i) \(G \rightarrow^l e \Rightarrow l = \bigwedge_{H \in \Delta} \{r \in L; H \rightarrow^r e\} \),

(ii) \(G \otimes^l e \Rightarrow l = \bigvee_{H \in \Delta} \{r \in L; H \otimes^r e\} \),

(iii) \(G \otimes(l) e \Rightarrow l = \bigvee_{H \in \Delta} \{r \in L; H \rightarrow (r)e\} \), if \(L\) is a chain,

(iv) \(G \otimes(l) e \Rightarrow \exists\) a subfilter \(H\) of \(G\) such that \(H \rightarrow (l)e\) if \(L\) is a chain,

(v) \(G \rightarrow_l e \Rightarrow l = \bigwedge_{H \in \Delta} \{r \in L; H \rightarrow^r e\} \), and

(vi) \(G \otimes_l e \Rightarrow l = \bigvee_{H \in \Delta} \{r \in L; H \otimes^r e\} \).

Proof. (i) For, any \(H \in \Delta\), \(H \rightarrow^r e\) and \(G \rightarrow^l e\) implies \(r \geq l\), so

\[
 l \leq \bigwedge_{H \in \Delta} \{r \in L; H \rightarrow^r e\}.
\]

Again as a particular case taking \(H = G\) we get \(l \geq \bigwedge_{H \in \Delta} \{r \in L; H \rightarrow^r e\}\). Hence the proof follows.

(ii) Similar to (i).

(iii) Let \(H\) be a subfilter of \(G\) such that \(H \rightarrow (r)e\). Then, for every \(s > r\), \(\tilde{Q}_s(e) \subseteq H\). So, \(U \in \tilde{Q}_s(e)\) and \(V \in G\) implies \(U, V \in H\) since \(\tilde{Q}_s(e), G \subseteq H\). This implies \(U \cap V \neq \emptyset\).

So, for some \(l \geq r\), \(G \otimes(l) e\). Again as \(H\) is any subfilter of \(G\), so \(G \otimes(l) e \Rightarrow l \geq \bigvee_{H \in \Delta} \{r \in L; H \rightarrow (r)e\}\).
Next let $G \infty(l) e$ in (X, τ) and let $B = G \cup \left(\bigcup_{m > l'} \tilde{Q}_m(e) \right)$. Then $U_1, U_2 \in \bigcup_{m > l'} \tilde{Q}_m(e)$ implies that there exists a $m_1, m_2 \in L_0$ such that $m_1, m_2 > l'$ and $U_1 \in \tilde{Q}_{m_1}(e)$ and $U_2 \in \tilde{Q}_{m_2}(e)$.

Without loss of generality let $m_1 > m_2$ then $U_1, U_2 \in \tilde{Q}_{m_2}$ (as $\tilde{Q}_{m_1}(e) \subseteq \tilde{Q}_{m_2}(e)$). So,

$$U_1 \cap U_2 \in \tilde{Q}_{m_2}(e) \Rightarrow U_1 \cap U_2 \in \bigcup_{m > l'} \tilde{Q}_m(e),$$

i.e., $\bigcup_{m > l'} \tilde{Q}_m(e)$ has the finite intersection property. G being a fuzzy filter, also has the finite intersection property.

Again $G \infty(l) e$ implies that, for all $m > l'$, $U \in G$ and $V \in \tilde{Q}_m(e)$ means $U \cap V \neq \emptyset$. Therefore $B = G \cup \left(\bigcup_{m > l'} \tilde{Q}_m(e) \right)$ has the finite intersection property. As $\emptyset \not\in G$ and $\emptyset \not\in \bigcup_{m > l'} \tilde{Q}_m(e)$, so $\emptyset \not\in B$. Denote the filter generated by B by $\uparrow B$.

So, $\uparrow B$ is a subfilter of G. Let $\mathcal{H} = \uparrow B$ then, for all $m > l'$, $\tilde{Q}_m(e) \subseteq \mathcal{H}$. This implies that, for some $r \geq l, \mathcal{H} \rightarrow (r)e$.

The proofs of (iv)-(vi) are straightforward. \qed

Definition 2.12. Let (X, τ) be an L-fuzzy topological space, S be a molecule net on L^X, G be a fuzzy filter on L^X. For S and G we define the fuzzy filter associated with the net S as the family $G(S)$ of all fuzzy subsets of X with which the net S eventually quasi-coincides. For G, let $D(G) = \{(e, A) \in M(L^X) \times G; e \leq A\}$ and equip $D(G)$ with the relation \leq on it as $\forall (e, A), (d, B) \in D(G), (e, A) \leq (d, B) \iff A \geq B$. Define the molecule net associated with the fuzzy filter G as the mapping $S(G) : D(G) \rightarrow M(L^X)$, defined by $S(G)(e, A) = e \forall (e, A) \in D(G)$.

Definition 2.13 (Mondal & Samanta [10]). Let (X, τ) be an L-fuzzy topological space and $e \in \text{Pt}(L^X)$. Let D be any directed set and $S : D \rightarrow \text{Pt}(L^X)$ be any fuzzy net. For $U \in L^X$ if $\exists m \in D$ such that $S(n) \leq U \forall n \geq m$ holds then we say $S \leq U$ eventually;

if, for every $m \in D$, there exists $n \in D$ such that $n \geq m$ and $S(n) \leq U$ then we say $S \leq U$ frequently. Call e a cluster point with upper grade l, denoted by $S \infty e^l$ (respectively, a cluster point with lower grade k, denoted by $S \infty e^k$) of a fuzzy net $S : D \rightarrow \text{Pt}(L^X)$, if

$$l' = \bigwedge\{r \in L_0; \forall U \in \tilde{Q}_r(e), U \leq S \text{ frequently}\}$$

(respectively, if $k' = \bigvee\{r \in L_0; \exists V \in \tilde{Q}_r(e) \text{ such that } V \geq S \text{ eventually}\}$). Call e a limit point of upper grade l of S, denoted by $S \rightarrow e^l$ (respectively, a limit point of
lower grade k of S, denoted by $S \rightarrow_k e$) if

$$l' = \bigwedge \{r \in L_0; \forall U \in \tilde{Q}_r(e), \ U \not\subseteq S \text{ eventually} \}$$

(respectively, $k' = \bigvee \{r \in L_0; \exists V \in \tilde{Q}_r(e) \text{ such that } V \not\varsubsetneq S \text{ frequently} \}).$

Proposition 2.14. Let (X, τ) be an L-fuzzy topological space, \mathcal{G} be a fuzzy filter on L^X, S be a molecule net in L^X, $e \in \text{Pt}(L^X)$. Then, for $k \in L$, we have the following properties.

(i) $S \rightarrow_k e \iff \mathcal{G}(S) \rightarrow_k e$.

(ii) $\mathcal{G} \rightarrow_k e \iff S(\mathcal{G}) \rightarrow_k e$.

(iii) $\mathcal{G} \infty_k e \iff S(\mathcal{G}) \infty_k e$.

(iv) $S \infty_k e \Rightarrow \mathcal{G}(S) \infty_l e$ for some $l \geq k$.

Proof. (i) $S \rightarrow_k e \iff k' = \bigwedge \{r \in L_0; \forall U \in \tilde{Q}_r(e), \ S \not\subseteq U \text{ eventually} \}$

$\iff k' = \bigwedge \{r \in L_0; \forall U \in \tilde{Q}_r(e), \ U \in \mathcal{G}(S) \}$

$\iff k' \infty \bigwedge \{r \in L_0; \tilde{Q}_r(e) \subseteq \mathcal{G}(S) \}$

$\iff \mathcal{G}(S) \rightarrow_k e$.

Similarly, we can prove the other results. □

Proposition 2.15. Let (X, τ) be an L-fuzzy topological space, \mathcal{G} be a fuzzy filter on L^X, S be a molecule net in L^X, $e \in \text{Pt}(L^X)$. Then, for $k \in L$, we have the following properties.

(i) $S \rightarrow_k e \iff \mathcal{G}(S) \rightarrow_k e$.

(ii) $\mathcal{G} \rightarrow_k e \iff S(\mathcal{G}) \rightarrow_k e$.

(iii) $\mathcal{G} \infty_k e \iff S(\mathcal{G}) \infty_k e$.

(iv) $S \infty_k e \Rightarrow \mathcal{G}(S) \infty_l e$ for some $l \geq k$.

Proof. (i) $S \rightarrow_k e \iff k' = \bigvee \{r \in L_0; \exists U \in \tilde{Q}_r(e) \text{ such that } S \not\varsubsetneq U \text{ frequently} \}$

$\iff k' = \bigvee \{r \in L_0; \exists U \in \tilde{Q}_r(e) \text{ such that } U \not\subseteq \mathcal{G}(S) \}$

$\iff k' = \bigwedge \{r \in L_0; \tilde{Q}_r(e) \not\subseteq \mathcal{G}(S) \} \iff \mathcal{G}(S) \rightarrow_k e$.

(ii) $\mathcal{G} \rightarrow_k e \Rightarrow k' = \bigvee \{r \in L_0; \tilde{Q}_r(e) \not\subseteq \mathcal{G} \}$.

Now $\tilde{Q}_r(e) \not\subseteq \mathcal{G}$ \Rightarrow $U \notin \mathcal{Q}_r(e)$ such that $U \not\subseteq \mathcal{G}$. Then, for every $(f, V) \in D(\mathcal{G})$, $U \not\supset V$.

Now $U \not\supset V \Rightarrow U' \not\subseteq V' \Rightarrow \exists x \in X$ such that $U'(x) \not\subseteq V'(x)$. As $M(L)$ is a join generating subset of L so there exists $k \in M(L)$ such that $U''(x) \geq k \not\subseteq V''(x)$ \Rightarrow $k_{x} \in M(L^X)$ and $k_{x} \subseteq U'$ but $k_{x} \not\subseteq V'$ \Rightarrow $k_{x} \not\subseteq V$ but $k_{x} \not\subseteq U \Rightarrow (k_{x}, V) \in D(\mathcal{G})$.

Again $(k_{x}, V) \geq (f, V)$ but $S(\mathcal{G})(k_{x}, V) = k_{x} \not\subseteq U \Rightarrow S(\mathcal{G}) \not\subseteq U$ frequently.
Conversely, if \(U \in \mathcal{G} \) then for all \((f, V), (g, U) \in D(\mathcal{G})\) with \((f, V) \geq (g, U)\) we have \(V \subseteq U \). Now \(f \not\preceq V \) and hence \(f \not\preceq U \). So, \([S(\mathcal{G})(f, V)] \not\preceq U\) i.e., \(S(\mathcal{G}) \not\preceq U \) eventually. Hence \(S(\mathcal{G}) \not\preceq U \) frequently \(\Rightarrow U \not\in \mathcal{G} \Rightarrow \tilde{Q}_r(e) \not\in \mathcal{G} \). So, \(U \in \tilde{Q}_r(e) \) and \(S(\mathcal{G}) \not\preceq U \) frequently \(\Rightarrow \tilde{Q}_r(e) \not\subseteq \mathcal{G} \). So, we can say now that

\[
\tilde{Q}_r(e) \not\subseteq \mathcal{G} \iff \exists U \in \tilde{Q}_r(e) \text{ such that } S(\mathcal{G}) \not\preceq U \text{ frequently}.
\]

Hence,

\[
\bigvee \{r \in L_0; \tilde{Q}_r(e) \not\subseteq \mathcal{G}\} = \bigvee \{r \in L_0; \exists U \in \tilde{Q}_r(e) \text{ such that } S(\mathcal{G}) \not\preceq U \text{ frequently}\},
\]

i.e., \(\mathcal{G} \to_k e \iff S(\mathcal{G}) \to_k e \).

(iii) Let, for some \(r \in L_0 \) there exists \(U \in \tilde{Q}_r(e) \) and \(V \in \mathcal{G} \) such that \(U \cap V = \emptyset \). Take \((f, V) \in D(\mathcal{G})\). We shall show that for all \((g, W) \in D(\mathcal{G})\) if \((g, W) \geq (f, V)\) then \(S(\mathcal{G})(g, W) \not\preceq U \). Suppose \(S(\mathcal{G})(g, W) \not\preceq U \), then \(g \not\preceq U \). Again

\[
(g, W) \geq (f, V) \Rightarrow g \not\preceq U \subseteq V,
\]

so \(g \not\preceq V \). Therefore \(g \in M(L^X) \), \(g \not\preceq U \) and \(g \not\preceq V \Rightarrow g \not\preceq (U \cap V) \Rightarrow U \cap V \neq \emptyset \), a contradiction.

Next let for some \(r \in L_0 \) \(\exists U \in \tilde{Q}_r(e) \) such that \(S(\mathcal{G}) \not\preceq U \) eventually. Then, there exists \((f, V) \in D(\mathcal{G})\) such that, for all \((g, W) \in D(\mathcal{G})\), \((g, W) \geq (f, V)\). This implies \(S(\mathcal{G})(g, W) \not\preceq U \), i.e., \(g \not\preceq U \).

Therefore for all \(g \not\preceq V \) as \((g, V) \geq (f, V)\) so \(S(\mathcal{G})(g, V) \not\preceq U \), i.e., \(g \not\preceq U \), i.e., \(\forall g \not\preceq V, g \not\preceq U \). So, \(U \cap V = \emptyset \). Thus (iii) is proved.

(iv) Let \(U \in \tilde{Q}_r(e) \) and \(V \in \mathcal{G}(S) \) be such that \(U \cap V = \emptyset \). Now \(V \in \mathcal{G}(S) \Rightarrow S \not\preceq V \) eventually \(\Rightarrow \exists m \in D \) such that \(\forall n \geq m, S(n) \not\preceq V \). We shall show that \(S \not\preceq U \) eventually. Suppose \(S \not\preceq U \) frequently, then \(\exists p \in D \) such that \(p \geq m \) and \(S(p) \not\preceq U \).

Now \(S(p) \not\preceq V \), \(S(p) \not\preceq U \) and \(S(p) \in M(L^X) \Rightarrow S(p)(U \cap V) \Rightarrow U \cap V \neq \emptyset \), a contradiction.

Thus for \(U \in \tilde{Q}_r(e) \), \(V \in \mathcal{G}(S) \) if \(U \cap V = \emptyset \) then \(S \not\preceq U \) eventually. So,

\[
l' = \bigvee \{r \in L_0; \exists U \in \tilde{Q}_r(e), \exists V \in \mathcal{G}(S); U \cap V = \emptyset\}
\leq \bigvee \{r \in L_0; \exists U \in \tilde{Q}_r(e) \text{ such that } S \not\preceq U \text{ eventually}\} = k',
\]

i.e., \(\mathcal{G}(S) \not\preceq_k e \Rightarrow S \not\preceq_k e \text{ for some } k \leq l \).
Definition 2.16 (Mondal & Samanta [10]). Let \((X, \mathcal{F})\) be an \(L\)-fuzzy co-topological space with \(\mathcal{F}\) as a \(GC\) on \(X\). For each \(A \in L^X\) we define
\[
cl(A, r) = \bigwedge \{D \in L^X; A \subseteq D; D \in \mathcal{F}_r\}
\]
where \(\mathcal{F}_r = \{C \in L^X; \mathcal{F}(C) \geq r\}\). The operator \(cl\) is said to be \(L\)-fuzzy closure operator in \((X, \mathcal{F})\).

Definition 2.17 (Mondal & Samanta [10]). In an \(L\)-fuzzy topological space \((X, \tau)\),
\[
p_x \in cl(A, m)
\]
if and only if, for all \(U \in \tau_m\), \(p_x \sqcup U \Rightarrow U \sqcup A\).

Proposition 2.18. Let \((X, \tau)\) be an \(L\)-fuzzy topological space and \(A \in L^X; e \in M(L^X)\). Then \(e \in cl(A, k')\) implies that there exists a fuzzy filter \(G\) on \(L^X\) such that \(A' \notin G\) and for some \(l \geq k\), \(G \rightarrow^l e\).

Proof. Let \(e \in cl(A, k')\). Then for every \(U \in \hat{\mathcal{Q}}_{k'}(e)\), \(U \sqcup A\) (by Proposition 2.17), \(i.e.,\) for every \(U \in \hat{\mathcal{Q}}_{k'}(e)\) \(\exists x^u \in X\) such that \(U(x^u) \not\leq A'(x^u) \Rightarrow A(x^u) \not< U'(x^u)\).

As \(M(L)\) is a join generating subset of \(L\) so \(\exists p^u \in M(L)\) such that \(A(x^u) \geq p^u \not< U'(x^u) \Rightarrow p_{x^u}^p \in M(L^X)\) and \(p_{x^u}^p \sqcup U\) and \(p_{x^u}^p \in A\).

As \(e \in M(L^X)\) so \(\hat{\mathcal{Q}}_{k'}(e)\) is a directed set with respect to the relation \(\geq\) defined by \(\forall U, V \in \hat{\mathcal{Q}}_{k'}(e); U \geq V \iff U \subseteq V\). So we define a molecule net \(S: \hat{\mathcal{Q}}_{k'}(e) \rightarrow M(L^X)\) by \(S(U) = p_{x^u}^p\). Then \(S\) is a molecule net in \(A\) and as \(\forall U \in \hat{\mathcal{Q}}_{k'}(e), U \sqcup A\) so \(\forall U \in \hat{\mathcal{Q}}_{k'}(e), U \sqcup S\) eventually, which implies \(\bigwedge\{s \in L_0; \forall U \in \hat{\mathcal{Q}}_s(e), U \sqcup S\} \leq k' \Rightarrow S \rightarrow^l e\) for some \(l \geq k\).

Now, for the associated filter \(G(S)\), by (i) of Proposition 2.14, \(G(S) \rightarrow^l e\). If \(A' \in G(S)\) then \(S\) eventually quasi-coincides with \(A'\) (\(i.e.,\) \(S\) is eventually not in \(A\)), this contradicts the fact that \(S\) is a fuzzy net in \(A\). So, \(A' \notin G(S)\).

Definition 2.19. Let \(X\) be nonempty crisp set. A nonempty subfamily \(A \subseteq L^X\) is called a filter base on \(L^X\), if \(\emptyset \notin A\) and \(A\) is closed under finite intersection. For a filter base \(A\) on \(L^X\), denote the filter generated by \(A\) as \(\uparrow A\).

Definition 2.20. Let \((X, \tau)\) be an \(L\)-fuzzy topological space, \(A\) a filter base on \(L^X\). An \(L\)-fuzzy point \(e \in \text{Pt}(L^X)\) is called a cluster point of \(A\) with upper grade \(k\), denoted by \(A \inf^k e\) (respectively, a cluster point of \(A\) with lower grade \(l\), denoted by \(A \inf_l e\)) if \(\uparrow A \inf^k e\) (respectively, if \(\uparrow A \inf_l e\); \(e\) is called a limit point of \(A\) with upper and lower grades \(m\) and \(n\), denoted by \(A \rightarrow^m e\) and \(A \rightarrow^n e\) respectively if \(\uparrow A \rightarrow^m e\) and \(\uparrow A \rightarrow^n e\).
Proposition 2.21. Let \((X, \tau)\) and \((Y, \delta)\) be any two \(L\)-fuzzy topological spaces and let \(f : (X, \tau) \to (Y, \delta)\) be a gp-map then for any filter base \(A\) in \((X, \tau)\) and \(\forall e \in \Pt(L^X), \ A \to^k e \Rightarrow f[A] \to^k f(e)\) for some \(k \geq l\).

Proof. Let \(\tilde{Q}_r(e)\) and \(\tilde{Q}_r(f(e))\) be the \(q\)-neighborhood systems of \(e\) and \(f(e)\) with respect to the Chang fuzzy topologies \(\tau_r\) and \(\delta_r\) respectively. Suppose \(A\) is a filter base in \((X, \tau)\), \(e \in \Pt(L^X)\) and \(A \to^l e\). Let \(\tilde{Q}_r(e) \subseteq A\). Then \(\forall V \in \tilde{Q}_r(f(e))\), since \(f\) is a gp-map, \(f^{-1}(V) \in \tilde{Q}_r(e) \Rightarrow \exists A \in A\) such that \(f^{-1}(V) \geq A\).

Therefore \(V \supseteq ff^{-1}(V) \supseteq f(A) \in f[A] \Rightarrow V \in f[A]\). \(\square\)

Proposition 2.22. Let \(f : (X, \tau) \to (Y, \delta)\) be a mapping where \((X, \tau)\) and \((Y, \delta)\) be any two \(L\)-Fuzzy topological spaces. If, for any fuzzy filter base \(A\) and for any \(e \in M(L^X)\),

\[A \to^k e \Rightarrow f[A] \to^l f(e) \text{ for some } l \geq k, \]

then \(f\) is a gp-map.

Proof. Suppose \(f\) be not a gp-map, then \(\exists V \in L^Y\) such that \(\tau(f^{-1}(V)) \not\supseteq \delta(V)\). Therefore from the order dense property of \(L\) we get \(k_1, k_2 \in L\) such that \(\tau(f^{-1}(V)) \not\supseteq k_1 < k_2 < \delta(V)\).

Now we have

\[\tau(f^{-1}(V)) \not\supseteq k_1 \]

\[\Rightarrow \bigwedge\{Q(e, f^{-1}(V)); e \in M(L^X)\} \not\supseteq k_1 \]

\[\Rightarrow \exists e^0 \in M(L^X) \text{ such that } e^0 q f^{-1}(V) \text{ and } Q(e^0, f^{-1}(V)) \not\supseteq k_1 \]

\[\Rightarrow \bigvee\{\tau(U); e^0 q U \subseteq f^{-1}(V)\} \not\supseteq k_1 \]

\[\Rightarrow \forall U \in L^X \text{ with } \tau(U) \geq k_1 \text{ and } e^0 q U, U \not\subseteq f^{-1}(V) \]

\[\Rightarrow f^{-1}(V) \not\subseteq \tilde{Q}_{k_1}(e^0) \]

\[\Rightarrow ff^{-1}(V) \not\subseteq f(\tilde{Q}_{k_1}(e^0)). \]

For, if \(f^{-1}(V) \not\subseteq \tilde{Q}_{k_1}(e^0)\) but \(ff^{-1}(V) \in f(\tilde{Q}_{k_1}(e^0))\) then \(\exists W \in \tilde{Q}_{k_1}(e^0)\) such that \(ff^{-1}(V) = f(W)\),

\[V \supseteq ff^{-1}(V) = f(W) \]

\[\Rightarrow f^{-1}(V) \supseteq W \Rightarrow f^{-1}(V) \in \tilde{Q}_{k_1}(e^0) \text{ (as } e^0 \in M(L^X) \Rightarrow \tilde{Q}_{k_1}(e^0) \text{ is a fuzzy filter),} \]

a contradiction. So, \(f^{-1}(V) \not\subseteq \tilde{Q}_{k_1}(e^0)\).

Hence

\[V \supseteq ff^{-1}(V) \not\subseteq f(\tilde{Q}_{k_1}(e^0)) \] (1)
Again $e^0 \mathcal{Q} f^{-1}(V) \Rightarrow f(e^0) \mathcal{Q} V$ and we have $\delta(V) > k_2$. So,

$$V \in \mathcal{Q}_{k_2}'(f(e^0)).$$

(2)

So, by (1) and (2), we have $f(\mathcal{Q}_{k_1}(e^0)) \not\supseteq \mathcal{Q}_{k_2}'(f(e^0))$. This means if

$$f[\mathcal{Q}_{k_1}(e^0)] \rightarrow f(e^0)$$

then $l' \geq k_2$. But from the definition of convergence we have if $\mathcal{Q}_{k_1}(e^0) \rightarrow k e^0$ then $k \geq k_1'$. This implies $k' \leq k_1$.

Therefore $l' \geq k_2 > k_1 \geq k' \Rightarrow l < k$, a contradiction to the given condition. Hence f is a gp-map. □

3. Lattice Valued Generalized Filter

Definition 3.1 (Burton, Muraleetharan & Gutiérrez [1]). Let $\mathcal{G} : L^X \rightarrow L$ be a mapping satisfying

(GF1) $\mathcal{G}(\emptyset) = 0; \mathcal{G}(\mathbb{1}) = 1,$

(GF2) $\forall A_1, A_2 \in L^X, \mathcal{G}(A_1 \land A_2) \geq \mathcal{G}(A_1) \land \mathcal{G}(A_2)$, and

(GF3) $\forall A, B \in L^X, \mathcal{G}(B) \geq \mathcal{G}(A)$ if $A \subset B$,

then \mathcal{G} is said to be a generalized filter (g-filter) on L^X.

Example 3.2. Let Q be the gradation of q-neighborhoodness in an L-fuzzy topological space (X, τ), $e \in M(L^X)$. We define a mapping $Q_e : L^X \rightarrow L$ by

$$Q_e(U) = Q(e, U), \forall U \in L^X.$$

Then Q_e is a g-filter on L^X.

Example 3.3. Similarly the mapping $N_e : L^X \rightarrow L$ for a particular $e \in \text{Pt}(L^X)$, defined by $N_e(U) = N(e, U), \forall U \in L^X$ is a g-filter on L^X where N is the gradation of neighborhoodness in an L-fuzzy topological space (X, τ).

Example 3.4. Let X be an infinite crisp set and let $\mathcal{G} : L^X \rightarrow L$ be defined by $\mathcal{G}(A) = \bigvee \{r \in L_0; A'[r'] = \text{finite}\}$ where $A'[r']$ is an r'-cut of A', then \mathcal{G} is a g-filter on L^X.

Definition 3.5. Let \mathcal{G} and \mathcal{H} be any two g-filters on L^X. We say \mathcal{G} is coarser than \mathcal{H} or \mathcal{H} is finer than \mathcal{G} if $\mathcal{G} \leq \mathcal{H}$. In this case \mathcal{H} is also called a subfilter of \mathcal{G}.
Definition 3.6. Let \mathcal{G} be a g-filter in an L-fuzzy topological space (X, τ) and $e \in \text{Pt}(L^X)$. Call e a limit point of \mathcal{G}, denoted by $\mathcal{G} \to e$ if $Q(e, U) \leq \mathcal{G}(U) \ \forall \ U \in L^X$, where Q is the gradation of q-neighborhoodness in (X, τ). Denote the join of all limit points of \mathcal{G} by $\lim \mathcal{G}$. Call e a cluster point of \mathcal{G}, denoted by $\mathcal{G} \triangleleft e$ if $\mathcal{G}(A) \ngeq Q'(e, U) \Rightarrow A \cap U \neq \emptyset, \ \forall \ A, U \in L^X$, where Q is the gradation of q-neighborhoodness on (X, τ). Denote the join of all cluster points of \mathcal{G} by $\text{clu} \mathcal{G}$.

Proposition 3.7. In an L-fuzzy topological space (X, τ) for any g-filter \mathcal{G} and, for $e, f \in \text{Pt}(L^X)$, we have

(i) $\mathcal{G} \to e \Rightarrow \mathcal{G} \triangleleft f$; if L is complemented,

(ii) $\mathcal{G} \triangleleft e \geq f \Rightarrow \mathcal{G} \triangleleft f$, and

(iii) $\mathcal{G} \to e \geq f \Rightarrow \mathcal{G} \to f$.

Proof. (i) Let $\mathcal{G} \to e$ and let $\mathcal{G}(A) \leq Q'(e, U)$ for some $A, U \in L^X$. Then from the order dense property of L $\exists \ k \in M(L)$ such that $\mathcal{G}(A) \geq k \leq Q'(e, U) \Rightarrow \mathcal{G}(A) \geq k$ and $Q(e, U) \leq k'$.

Again $Q(e, U) \leq k' \Rightarrow \exists \ l \in M(L)$ such that $Q(e, U) \geq l \leq k'$. So,

$$\mathcal{G}(A \cap U) \geq \mathcal{G}(A) \wedge \mathcal{G}(U) \ \text{by (GF2)}$$

$$\geq \mathcal{G}(A) \wedge Q(e, U) \ (\text{as } \mathcal{G} \to e)$$

$$\geq k \wedge l.$$

Now $l \leq 1 = k \vee k'$ (as L is complemented) $\Rightarrow l \leq k$ or $l \leq k'$ (as $l \in M(L)$) $\Rightarrow l \leq k$ (as $l \leq k'$ is assumed). So, $k \wedge l = l > 0$ (as $l \leq k'$ $\Rightarrow l > 0$) $\Rightarrow \mathcal{G}(A \cap U) > 0 \Rightarrow A \cap U \neq \emptyset$, by (GF1) $\Rightarrow \mathcal{G} \triangleleft e$.

(ii) Let $\mathcal{G} \triangleleft e \geq f$ and let $\mathcal{G}(A) \leq Q'(f, U)$ for some $A, U \in L^X$. Then as $e \geq f \Rightarrow Q(e, U) \geq Q(f, U)$ and $Q'(f, U) \geq Q'(e, U) \Rightarrow \mathcal{G}(A) \leq Q'e, U) \Rightarrow A \cap U \neq \emptyset$ (as $\mathcal{G} \triangleleft e$) $\Rightarrow \mathcal{G} \triangleleft f$.

(iii) The proof is straightforward. □

Proposition 3.8. In an L-fuzzy topological space (X, τ) if \mathcal{H} is finer than \mathcal{G} and $p_x \in \text{Pt}(L^X)$ then, we have

(i) $\lim \mathcal{G} \leq \text{clu} \mathcal{G}$ if L is complemented,

(ii) $p_x \in \text{clu} \mathcal{G} \iff \mathcal{G} \triangleleft p_x$, if L is a chain,

(iii) $p_x \in \lim \mathcal{G} \iff \mathcal{G} \to p_x$, if L is a chain,

(iv) $\mathcal{H} \triangleleft p_x \Rightarrow \mathcal{G} \triangleleft p_x$,

(v) $\text{clu} \mathcal{G} \geq \text{clu} \mathcal{H}$, and
(vi) \(\lim \mathcal{G} \leq \lim \mathcal{H} \).

Proof. (i) is clear.

(ii) \(\mathcal{G} \cap p_x \Rightarrow p_x \in \text{cl} u \mathcal{G} \) is clear.

Let \(p_x \in \text{clu} \mathcal{G} \) and suppose \(\mathcal{G} \not\supseteq p_x \). Then \(\exists A, U \in L^X \) such that \(\mathcal{G}(A) \not\subseteq Q'(p_x, U) \) but \(A \cap U = \tilde{0} \).

Now \(\mathcal{G}(A) \not\subseteq Q'(p_x, U) \Rightarrow \mathcal{G}'(A) \not\subseteq Q(p_x, U) \mathcal{G}'(A) \not\subseteq \bigvee \{ r \in L_0; U \in \tilde{Q}_r(p_x) \} \Rightarrow \exists s \in L_0 \) such that \(s \not\subseteq \mathcal{G}'(A) \) but \(U \in \tilde{Q}_s(p_x) \).

Now \(U \in \tilde{Q}_s(p_x) \Rightarrow \exists V \in \tau_s \) such that \(p_x \sqcup V \subseteq U \). Again \(p_x \sqcup V \Rightarrow p \not\subseteq V'(x) \Rightarrow \exists t \in L_0 \) such that \(p > t \not\subseteq V'(x) \) (since \(L \) is order dense), i.e., \(t_x \sqcup V \subseteq U \Rightarrow U \in \tilde{Q}_s(t_x) \Rightarrow Q(t_x, U) \geq s \). As \(L \) is a chain so \(\mathcal{G} \cap t_x \) from the definition of \(\text{clu} \mathcal{G} \). Now \(\mathcal{G}'(A) \not\subseteq s \Rightarrow \mathcal{G}(A) \not\subseteq s' \geq Q'(t_x, U) \Rightarrow \mathcal{G}(A) \not\subseteq Q'(t_x, U) \Rightarrow A \cap U \neq \tilde{0} \), a contradiction.

(iii) Similar to (ii).

Proofs of (iv)-(vi) are straightforward.

Proposition 3.9. Let \(\mathcal{G} \) be a g-filter on \(L^X \) and let \(\mathcal{G}_r = \{ U \in L^X; \mathcal{G}(U) \geq r \} \) then

1. for every \(r \in L_0, \mathcal{G}_r \) is a fuzzy filter on \(L^X \),
2. \(\forall r, s \in L_0, \mathcal{G}_r \subseteq \mathcal{G}_s \) if \(r \geq s \), and
3. \(\bigcap_{i \in \Delta} \mathcal{G}_{r_i} = \mathcal{G}_{V_{i \in \Delta} r_i} \).

Proof. (1) (i) We have \(\mathcal{G}(\bar{1}) = 1 \Rightarrow \mathcal{G}_r \neq \emptyset \forall r \in L_0 \).

(ii) \(\mathcal{G}(\bar{0}) = 0 \Rightarrow \bar{0} \not\in \mathcal{G}_r \forall r \in L_0 \).

(iii) \(U_1, U_2 \in \mathcal{G}_r \Rightarrow \mathcal{G}(U_i) \geq r; \ i = 1, 2 \)

\(\Rightarrow \mathcal{G}(U_1 \cap U_2) \geq \mathcal{G}(U_1) \wedge \mathcal{G}(U_2) \), by (GF2)

\(\geq r \)

\(\Rightarrow U_1 \wedge U_2 \in \mathcal{G}_r, \forall r \in L_0 \).

(iv) Let \(U \in \mathcal{G}_r \) and \(U \subseteq V \) then \(\mathcal{G}(V) \geq \mathcal{G}(U) \), by (GF3)

\(\geq r \)

\(\Rightarrow V \in \mathcal{G}_r, \forall r \in L_0 \).

Hence \(\mathcal{G}_r \) is a fuzzy filter on \(L^X \).

(2) The proof is straightforward.

(3) \(A \in \bigcap_{i \in \Delta} \mathcal{G}_{r_i} \iff \forall i \in \Delta, A \in \mathcal{G}_{r_i} \iff \forall i \in \Delta, \mathcal{G}(A) \geq r_i \iff \mathcal{G}(A) \geq V_{i \in \Delta} r_i \iff A \in \mathcal{G}_{V_{i \in \Delta} r_i} \). So, \(\bigcap_{i \in \Delta} \mathcal{G}_{r_i} = \mathcal{G}_{V_{i \in \Delta} r_i} \).
Proposition 3.10. Let for each \(r \in L_0 \), \(\mathcal{G}_r \) be a collection of \(L \)-fuzzy subsets of \(X \) satisfying conditions

1. \(\mathcal{G}_r \) is a fuzzy filter on \(L^X \) for each \(r \in L_0 \), and
2. For all \(r, s \in L_0 \), \(\mathcal{G}_r \subseteq \mathcal{G}_s \) if \(r \geq s \),

then the mapping \(\tilde{\mathcal{G}} : L^X \to L \), defined by \(\tilde{\mathcal{G}}(A) = \bigvee \{ r \in L_0; A \in \mathcal{G}_r \} \) is a g-filter on \(L^X \). If further \(\{ \mathcal{G}_r \}_{r \in L_0} \) satisfies Condition (3) of Proposition 3.9, then, for all \(r \in L_0 \), \(\mathcal{G}_r = \tilde{\mathcal{G}}_r = \{ U \in L^X; \tilde{\mathcal{G}}(U) \geq r \} \).

Proof. (1) (i) Since \(\forall r \in L_0 \), \(\mathcal{G}_r \) is a fuzzy filter on \(L^X \), it follows that \(\tilde{\mathcal{G}}(0) = 0 \) and \(\forall r \in L_0 \), \(\mathcal{G}_r \neq \phi \). So, \(\tilde{\mathcal{G}}(1) = 1 \).

(ii) \(A_1 \in \mathcal{G}_{r_1}, A_2 \in \mathcal{G}_{r_2} \Rightarrow A_1, A_2 \in \mathcal{G}_{r_1 \wedge r_2} \) (by (2)) \(\Rightarrow A_1 \cap A_2 \in \mathcal{G}_{r_1 \wedge r_2} \Rightarrow \tilde{\mathcal{G}}(A_1 \cap A_2) \geq r_1 \wedge r_2 \). As \(L \) is completely distributive so

\[
\tilde{\mathcal{G}}(A_1 \cap A_2) \geq \tilde{\mathcal{G}}(A_1) \wedge \tilde{\mathcal{G}}(A_2).
\]

(iii) Let \(A \subseteq B \). Then for \(r \in L_0 \), \(A \in \mathcal{G}_r \Rightarrow B \in \mathcal{G}_r \). So, \(\tilde{\mathcal{G}}(B) \geq \tilde{\mathcal{G}}(A) \).

(2) Now we shall show that \(\forall r \in L_0 \), \(\mathcal{G}_r = \tilde{\mathcal{G}}_r \). In fact \(A \in \mathcal{G}_r \Rightarrow \bigvee \{ k; A \in \mathcal{G}_k \} \geq r \Rightarrow \tilde{\mathcal{G}}(A) \geq r \Rightarrow A \in \tilde{\mathcal{G}}_r \). So, for all \(r \in L_0 \), \(\mathcal{G}_r \subseteq \tilde{\mathcal{G}}_r \). Again \(B \in \tilde{\mathcal{G}}_r \Rightarrow \tilde{\mathcal{G}}(B) \geq r \Rightarrow \bigvee \{ k \in L_0; B \in \mathcal{G}_k \} \geq r \). Let \(S = \{ k \in L_0; B \in \mathcal{G}_k \} \) then for all \(k \in S \), \(B \in \mathcal{G}_k \). So, \(B \in \bigcap_{k \in S} \mathcal{G}_k = \mathcal{G}_{\bigvee_{k \in S} k} = \mathcal{G}_{k'} \), where \(k' \geq r \subseteq \mathcal{G}_r \). So, \(B \in \mathcal{G}_r \Rightarrow B \in \tilde{\mathcal{G}}_r \subseteq \mathcal{G}_r \). \(\square \)

Proposition 3.11. Let \(\mathcal{G} \) be a g-filter on an \(L \)-fuzzy topological space \((X, \tau) \) and let \(e \in \text{Pt}(L^X) \) then

\[
\forall r \in L_0, \mathcal{G} \rightarrow e \Rightarrow \mathcal{G}_r \rightarrow^{l} e \text{ for some } l \geq r'.
\]

Proof. \(\mathcal{G} \rightarrow e \Rightarrow \mathcal{G}(U) \geq Q(e, U) \forall U \in L^X \Rightarrow \mathcal{G}_r \supseteq \tilde{\mathcal{G}}_r(e) \Rightarrow \]

\[
l' = \bigwedge \{ s \in L_0; \tilde{\mathcal{G}}_s(e) \subseteq \mathcal{G}_r \} \leq r.
\]

Therefore \(\mathcal{G}_r \rightarrow^{l} e \) for some \(l \geq r' \). \(\square \)

Proposition 3.12. Let \(\mathcal{G} \) be a g-filter on an \(L \)-fuzzy topological space \((X, \tau) \) and \(e \in \text{Pt}(L^X) \). If for every \(r \in L_0 \), \(\mathcal{G}_r \rightarrow_k e \) for some \(k \geq r' \) then \(\mathcal{G} \rightarrow e \).

Proof. Let the given condition be satisfied. To show

\[
\mathcal{G}(U) \geq Q(e, U), \forall U \in L^X,
\]

suppose, for some \(U \in L^X, \mathcal{G}(U) \not\supseteq Q(e, U) \), i.e., \(\mathcal{G}(U) \not\supseteq \bigvee \{ \tau(V); e \in V \subseteq U \} \)

\[
\Rightarrow \not\exists V \in L^X \text{ such that } e \in V \subseteq U \text{ and } \tau(V) \leq \mathcal{G}(U)
\]
\[\Rightarrow \exists \alpha, \beta \in L_0 \text{ such that } G(U) \not\leq \alpha < \beta < \tau(V) \quad \text{(since } L \text{ is order dense)} \]
\[\Rightarrow U \not\in G_\alpha \text{ but } \tau(V) > \beta \text{ means } U \in \tilde{Q}_\beta(e). \]
Therefore
\[\tilde{Q}_\beta(e) \not\in G_\alpha \quad (\ast) \]
Now according to the given condition \(G_\alpha \rightarrow_k e \) for some \(k \geq \alpha' \) where
\[k' = \bigvee \{ s \in L_0; \tilde{Q}_s(e) \not\subset G_\alpha \}. \]
\[\Rightarrow k' \geq \beta; \text{ by } (\ast) \Rightarrow k' \geq \beta > \alpha \Rightarrow k < \alpha', \text{ a contradiction.} \]

Proposition 3.13. Let \(G \) be a g-filter on an L-fuzzy topological space \((X, \tau)\) and let \(e \in \Pt(L^X) \) then \(\forall r \in L_0, \ G \bowtie e \Rightarrow G_r \bowtie_k e \) for some \(k \geq r \).

Proof. Let \(G \bowtie e \) and suppose \(\exists r \in L_0 \) such that for no \(k \geq r \), \(G_r \bowtie_k e \). Then
\[G_r \bowtie_k e \Rightarrow k \not\leq r \Rightarrow k' \not\leq r' \Rightarrow \]
\[\bigvee \{ s \in L_0; \exists U \in \tilde{Q}_s(e), \exists A \in G_r; A \cap U = \tilde{0} \} \not\leq r' \]
\[\Rightarrow \exists s \in L_0 \text{ such that } s \not\leq r' \text{ and } \exists U \in \tilde{Q}_s(e), \exists A \in G_r \text{ such that } A \cap U = \tilde{0}. \]
Now \(U \in \tilde{Q}_s(e) \) and \(A \in G_r \Rightarrow Q(e, U) \geq s \) and \(G(A) \geq r \Rightarrow Q'(e, U) \leq s' \) and \(G(A) \geq r \). Therefore, \(s \not\leq r' \Rightarrow s' \not\leq r \Rightarrow Q'(e, U) \not\leq G(A) \) but \(A \cap U = \tilde{0} \), a contradiction to the fact \(G \bowtie e \). \]

Proposition 3.14. Let \(G \) be a g-filter on an L-fuzzy topological space \((X, \tau)\) and \(e \in \Pt(L^X) \). If for every \(r \in L_0, \ G_r \bowtie_k e \) for some \(k \geq r \) then \(G \bowtie e \).

Proof. Let the given condition be satisfied. To show \(G \bowtie e \), suppose \(G \not\bowtie e \). Then
\[\exists A, U \in L^X \text{ such that } G(A) \not\leq Q'(e, U) \text{ but } A \cap U = \tilde{0}. \]
Therefore
\[G(A) \not\leq Q'(e, U). \]
\[\Rightarrow \exists \alpha \in L_0 \text{ such that } G(A) > \alpha \not\leq Q'(e, U) \text{ (from the order dense property of } L) \]
\[\Rightarrow G(A) > \alpha \text{ and } Q(e, U) \not\leq \alpha'. \]
Now
\[G(A) > \alpha \Rightarrow A \in G_\alpha \text{ and } Q(e, U) \not\leq \alpha' \]
\[\Rightarrow \bigvee \{ r \in L_0; U \in \tilde{Q}_r(e) \} \not\leq \alpha' \text{ (from the definition of } Q(e, U) \)} \]
\[\Rightarrow \exists \beta \in L_0 \text{ such that } \beta \not\leq \alpha' \text{ and } U \in \tilde{Q}_\beta(e). \]
Therefore,

\[A \in \mathcal{G}_\alpha, \ U \in \hat{Q}_\beta(e) \text{ but } A \cap U = \tilde{0} \text{ and } \beta \not\leq \alpha' \Rightarrow \bigvee \{ r \in L_0; \exists U \in \hat{Q}_r(e), \exists A \in \mathcal{G}_\alpha; \ A \cap U = \tilde{0} \} \geq \beta \not\leq \alpha'. \]

Let \(k' = \bigvee \{ r \in L_0; \exists U \in \hat{Q}_r(e), \exists A \in \mathcal{G}_\alpha; \ A \cap U = \tilde{0} \} \) then \(\mathcal{G}_\alpha \propto_k e \) where \(k' \geq \beta \not\leq \alpha' \Rightarrow \mathcal{G}_\alpha \propto_k e \) where \(k' \not\leq \alpha' \) i.e., \(k \not\leq \alpha \) which is contradictory to the given condition.

\[\square \]

Lemma 3.15. Let \((X, \tau)\) and \((Y, \delta)\) be any two \(L\)-fuzzy topological spaces and \(f : (X, \tau) \to (Y, \delta) \) be any mapping then \(f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2) \).

Proof. For all \(x \in X \),

\[f^{-1}(B_1 \cap B_2)(x) = (B_1 \cap B_2)f(x) \]
\[= B_1(f(x)) \land B_2(f(x)) \]
\[= [f^{-1}(B_1)(x)] \land [f^{-1}(B_2)(x)] \]
\[= [f^{-1}(B_1) \cap f^{-1}(B_2)](x). \]

Hence the proof. \[\square \]

Lemma 3.16. Let \((X, \tau)\) and \((Y, \delta)\) be any two \(L\)-fuzzy topological spaces and let \(Q, \hat{Q} \) be the gradation of \(q \)-neighborhoodness in \((X, \tau)\) and \((Y, \delta)\) respectively. A mapping \(f : (X, \tau) \to (Y, \delta) \) is a \(gp \)-map if and only if

\[\forall e \in M(L^X) \text{ and } \forall V \in L^Y, \ Q(e, f^{-1}(V)) \geq \hat{Q}(f(e), V). \]

Proof. We have \(\hat{Q}(f(e), V) = \bigvee \{ \delta(W); \ f(e) \downarrow W \subseteq V \} \). Now

\[f(e) \downarrow W \subseteq V \Rightarrow e \downarrow f^{-1}(W) \subseteq f^{-1}(V) \text{ and } \tau(f^{-1}(W)) \geq \delta(W), \]

as \(f \) is a \(gp \)-map. So, \(\bigvee \{ \tau(U); \ e \downarrow U \subseteq f^{-1}(V) \} \geq \bigvee \{ \delta(W); \ f(e) \downarrow W \subseteq V \} \). So,

\[Q(e, f^{-1}(V)) \geq \hat{Q}(f(e), V), \forall e \in M(L^X) \text{ and } \forall V \in L^Y. \]

Conversely, let \(Q(e, f^{-1}(U)) \geq \hat{Q}(f(e), U), \forall e \in M(L^X) \text{ and } \forall U \in L^Y \) and suppose \(f \) be not a \(gp \)-map. Then \(\exists \) at least one \(U \in L^Y \) such that \(\tau(f^{-1}(U)) \not\leq \delta(U) \). Therefore, by Propositions 1.5, 1.6 and 1.7, we have

\[\bigwedge \{ Q(p_x, f^{-1}(U)); \ p_x \in M(L^X) \text{ and } p_x \downarrow f^{-1}(U) \} \]
\[\not\leq \bigwedge \{ \hat{Q}(r_y, U); \ r_y \in M(L^Y) \text{ and } r_y \downarrow U \} \]
\[\Rightarrow \exists p_x \in M(L^X) \text{ such that } p_x \not\in Q(f^{-1}(U)) \text{ and } Q(p_x, f^{-1}(U)) \]
\[\not\leq \bigwedge \{ \hat{Q}(r_y, U); r_y \in M(L^Y) \text{ and } r_y \not\in Q(U) \} \]
\[\Rightarrow Q(p_x, f^{-1}(U)) \not\leq \hat{Q}(r_y, U), \forall r_y \in M(L^Y) \text{ with } r_y \not\in Q(U). \]

This implies
\[Q(p_x, f^{-1}(U)) \not\leq \hat{Q}(f(p_x), U) \]
(since \(p_x \in M(L^X) \) and \(p_x \not\in Q(U) \Rightarrow f(p_x) \in M(L^Y) \) and \(f(p_x) \not\in Q(U) \), which is a contradiction. Hence the proof. \(\square \)

Definition 3.17. Let \((X, \tau)\) and \((Y, \delta)\) be any two \(L\)-fuzzy topological spaces and \(f : (X, \tau) \rightarrow (Y, \delta)\) be any mapping and \(\mathcal{G}\) be any \(g\)-filter on \(X\), we define
\[f[\mathcal{G}](B) = \mathcal{G}(f^{-1}(B)), \forall B \in L^Y. \]

Proposition 3.18. Let \((X, \tau)\) and \((Y, \delta)\) be any two \(L\)-fuzzy topological spaces and \(f : (X, \tau) \rightarrow (Y, \delta)\) be any mapping then for any \(g\)-filter \(\mathcal{G}\) on \((X, \tau)\), \(f[\mathcal{G}]\) is a \(g\)-filter on \((Y, \delta)\).

Proof. (1) As we know \(f^{-1}(\tilde{0}_Y) = \tilde{0}_X\) and \(f^{-1}(\tilde{1}_Y) = \tilde{1}_X\) so,
\[f[\mathcal{G}](\tilde{0}_Y) = \mathcal{G}(f^{-1}(\tilde{0}_Y)) = \mathcal{G}(\tilde{0}_X) = 0 \text{ and } f[\mathcal{G}](\tilde{1}_Y) = \mathcal{G}(f^{-1}(\tilde{1}_Y)) = \mathcal{G}(\tilde{1}_X) = 1. \]

(2) \(f[\mathcal{G}](B_1 \cap B_2) = \mathcal{G}(f^{-1}(B_1 \cap B_2)) \geq \mathcal{G}(f^{-1}(B_1) \cap f^{-1}(B_2)) \)
by Lemma 3.15 and (GF3). Therefore, by (GF2),
\[f[\mathcal{G}](B_1 \cap B_2) \geq \mathcal{G}(f^{-1}(B_1)) \land \mathcal{G}(f^{-1}(B_2)) = f[\mathcal{G}](B_1) \land f[\mathcal{G}](B_2). \]

(3) \(B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2), \forall B_1, B_2 \in L^Y. \) Then, by (GF3),
\[f[\mathcal{G}](B_2) = \mathcal{G}(f^{-1}(B_2)) \geq \mathcal{G}(f^{-1}(B_1)) = f[\mathcal{G}](B_1). \]

Hence \(f[\mathcal{G}]\) is a \(g\)-filter on \((Y, \delta)\). \(\square \)

Proposition 3.19. Let \((X, \tau)\) and \((Y, \delta)\) be any two \(L\)-fuzzy topological spaces and \(f : (X, \tau) \rightarrow (Y, \delta)\) be a \(gp\)-map then, for any \(g\)-filter \(\mathcal{G}\) and for any \(e \in \text{Pt}(L^X)\),
\[\mathcal{G} \rightarrow e \Rightarrow f[\mathcal{G}] \rightarrow f(e). \]

Proof. Let \(Q\) and \(\hat{Q}\) be the gradations of \(Q\)-neighborhoodness in \((X, \tau)\) and \((Y, \delta)\) respectively and let \(B \in L^Y\), then
\[\mathcal{G}(f^{-1}(B)) \geq Q(e, f^{-1}(B)) \quad \text{[as } \mathcal{G} \rightarrow e]\]
\[\geq \hat{Q}(f(e), B), \]
by Lemma 3.16. This implies \(f[\mathcal{G}](B) \geq \hat{Q}(f(e), B). \) \(\square \)
Proposition 3.20. Let $f : (X, \tau) \to (Y, \delta)$ be a mapping where (X, τ) and (Y, δ) be any two L-fuzzy topological spaces. If, for any g-filter \mathcal{G} and for any $e \in M(L^X)$,

$$\mathcal{G} \to e \Rightarrow f[\mathcal{G}] \to f(e)$$

then f is a gp-map.

Proof. Let Q and \hat{Q} be the gradations of \hat{q}-neighborhoodness in (X, τ) and (Y, δ) respectively. As $e \in M(L^X)$ so the mapping $Q_e : L^X \to L$ given by $Q_e(U) = Q(e, U)$ is a g-filter on L^X and $Q_e \to e$. So, according to the given condition $f[Q_e] \to f(e)$. So, $\forall V \in L^Y$, $f[Q_e](V) \geq \hat{Q}(f(e), V) \Rightarrow Q_e(f^{-1}(V)) \geq \hat{Q}(f(e), V) \Rightarrow Q(e, f^{-1}(V)) \geq \hat{Q}(f(e), V)$.

Hence, by Lemma 3.16, f is a gp-map. \qed

Acknowledgement

The authors are grateful to the referees for their valuable comments.

References

2. ______: Generalised filters. II. Fuzzy Sets and Systems 106 (1999), no. 3, 393–400. MR 1699733

(K. K. Mondal) DEPARTMENT OF MATHEMATICS, KURSEONG COLLEGE, KURSEONG-734203, WEST BENGAL, INDIA

(S. K. Samanta) DEPARTMENT OF MATHEMATICS, VISVA-BHARATI UNIVERSITY, SANTINIKETAN-731235, WEST BENGAL, INDIA

Email address: syamal.123@yahoo.co.in