DOI QR코드

DOI QR Code

Study on the Synthesis by Milling and Solid-State Reaction Method and Electrochemical Properties of LiNiO2

기계적 혼합과 고상법에 의한 LiNiO2의 합성과 전기화학적 특성

  • Kim, Hunuk (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Engineering Research Institute, Chonbuk National University) ;
  • Youn, SunDo (Division of Applied Chemical Engineering, Chonnam National University) ;
  • Lee, Jaecheon (Division of Applied Chemical Engineering, Chonnam National University) ;
  • Park, HyeRyoung (Division of Applied Chemical Engineering, Chonnam National University) ;
  • Song, Myoungyaup (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Engineering Research Institute, Chonbuk National University)
  • 김훈욱 (전북대학교 신소재공학부) ;
  • 윤순도 (전남대학교 응용화학공학부) ;
  • 이재천 (전남대학교 응용화학공학부) ;
  • 박혜령 (전남대학교 응용화학공학부) ;
  • 송명엽 (전북대학교 신소재공학부)
  • Published : 2005.05.01

Abstract

[ $LiNiO_2$ ] was synthesized by the solid-state method after mixing $LiOH{\cdot}H_2O$ and $Ni(OH)_2$ with SPEX mill. The optimum condition for the synthesis of $LiNiO_2$ was the calcination at $750^{\circ}C$ for 30h in $O_2$ stream after milling for 1 h. The $LiNiO_2$ synthesized under this condition showed relatively large value of $I_{003}/I_{104}$ and relatively small value of R-factor. When $LiNiO_2$ was cycled in 2.7$\~$4.15 V at 0.1C-rate, the first discharge capacity was not very large (145.8 mAh/g) but it showed good cycling performance. When $LiNiO_2$ was cycled in 2.7$\~$4.2 V at 0.1C-rate, the first discharge capacity was large but ,it showed poor cycling performance probably because of the transition of H2 hexagonal structure to H3 hexagonal structure. In addition, when $LiNiO_2$ was cycled in 1.0$\~$4.8 V at 1/24C- rate, the first discharge capacity was very large (257.7 mAh/g) and the discharge capacity increased with the number of cycles.

Keywords

References

  1. J. R. Dahn, U. von Sacken, and C. A. Michal, ' Structure and Electrochemistry of $Li_{1{\pm}y}NiO_{2}$ and a New $Li_{2}NiO_{2}$ Phase with the $Ni(OH)_{2}$ Structure,' Solid State Ion., 44 [1-2] 87-97 (1990) https://doi.org/10.1016/0167-2738(90)90049-W
  2. H. Rim, S. G. Kang, S. H. Chang, and M. Y. Song, ' A Study on the Synthesis and the Electrochemical Properties of $LiNi_{1-y}Co_{y}O_{2}$ from $Li_{2}CO_{3}$ , $NiCO_{3}$, and $CoCO_{3}$(in Korean),' J. Kor. Ceram. Soc., 38 [6] 515-21 (2001)
  3. M. Y. Song, H. Rim, E. Y. Bang, S. G. Kang, and S. H. Chang, ' Synthesis of Cathode Materials $LiNi_{1-y}Co_{y}O_{2}$ from various Starting Materials and their Electrochemical Properties(in Korean),' J. Kor. Ceram. Soc., 40 [6] 507-12 (2003) https://doi.org/10.4191/KCERS.2003.40.6.507
  4. W. Ebner, D. Fouchard, and L. Xie, ' The $LiNiO_{2}$/Carbon Lithium-Ion Battery,' Solid State Ion., 69 [3-4] 238-56 (1994) https://doi.org/10.1016/0167-2738(94)90413-8
  5. K. Ozawa, ' Lithium-Ion Rechargeable Batteries with $LiCoO_{2}$ and Carbon Electrodes: The $LiCoO_{2}$/C System,' Solid State Ion., 69 [3-4] 212-21 (1994) https://doi.org/10.1016/0167-2738(94)90411-1
  6. R. Alcantara, P. Lavela, J. L. Tirado, R. Stoyanova, and E. Zhecheva, ' Structure and Electrochemical Properties of Boron-Doped $LiCoO_{2}$,' J. Solid State Chem., 134 [2] 265-73 (1997) https://doi.org/10.1006/jssc.1997.7552
  7. Z. S. Peng, C. R. Wan, and C. Y. Jiang, ' Synthesis by Sol-Gel Process and Characterization of $LiCoO_{2}$ Cathode Materials,' J. Power Sources, 72 [2] 215-20 (1998) https://doi.org/10.1016/S0378-7753(97)02689-X
  8. M. H. Rossouw, D. C. Liles, and M. M. Thackeray, ' Synthesis and Structural Characterization of a Novel Layered Lithium Manganese Oxide, $Li_{0.36}Mn_{0.91}O_{2}$, and Its Lithiated Derivative, $Li_{1.09}Mn_{0.91}O_{2}$,' J. Solid State Chem., 104 [2] 464-66 (1993) https://doi.org/10.1006/jssc.1993.1182
  9. M. M. Thackeray, ' Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries,' J. Electrochem. Soc., 142 [8] 2558-64 (1995) https://doi.org/10.1149/1.2050053
  10. A. R. Armstrong and P. G. Bruce, ' Synthesis of Layered $LiMnO_{2}$ as an Electrode for Rechargeable Lithium Bat teries,' Nat., 381 [6] 499-500 (1996) https://doi.org/10.1038/381499a0
  11. M. Y. Song, I. H. Kwon, and M. S. Shon, ' Electrochemical Properties of $LiNi_{y}Mn_{2-y}O_{4}$ Prepared by the Solid-State Reaction(in Korean),' J. Kor. Ceram. Soc., 40 [5] 401-04 (2003) https://doi.org/10.4191/KCERS.2003.40.5.401
  12. M. Y. Song and D. S. Ahn, ' Improvement in the Cycling Performance of $LiMn_{2}O_{4}$ by the Substitution of Fe for Mn,' Solid State Ion., 112 [3-4] 245-48 (1998) https://doi.org/10.1016/S0167-2738(98)00233-1
  13. T. Ohzuku, A. Ueda, and M. Nagayama, ' Electrochemistry and Structural Chemistry of $LiNiO_{2}(R3m)$ for 4 Volt Secondary Lithium Cells,' J. Electrochem. Soc., 140 [7] 1862-70 (1993) https://doi.org/10.1149/1.2220730
  14. H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki, ' Characterization and Cathode Performance of $Li_{1-x}Ni_{1+x}O_{2}$ Prepared with the Excess Lithium Method,' Solid State Ion., 80 [3-4] 261-69 (1995) https://doi.org/10.1016/0167-2738(95)00144-U
  15. W. Li, J. N. Reimers, and J. R. Dahn, ' In Situ X-Ray Diffraction and Electrochemical Studies of $Li_{1-x}NiO_{2}$,' Solid State Ion., 67 [1-2] 123-30 (1993) https://doi.org/10.1016/0167-2738(93)90317-V
  16. Q. Zhong and U. von Sacken, ' Crystal Structure sand Electrochemical Properties of $LiAl_{y}Ni_{1-y}O_{2}$ Solid Solution,' J. Power Sources, 54 [2] 221-23 (1995) https://doi.org/10.1016/0378-7753(94)02071-A
  17. L. Croguennec, C. Pouillerie, and C. Delmas, ' Structural Characterization of New Metastable $NiO_{2}$ Phases,' Solid State Ion., 135 [1-4] 259-66 (2000) https://doi.org/10.1016/S0167-2738(00)00441-0
  18. S. S. Zhang, T. R. Jow, K. Amine, and G. L. Henriksen, ' $LiPF_{6}$-EC-EMC Electrolyte for Li-Ion Battery,' J. Power Sources, 107 [1] 18-23 (2002) https://doi.org/10.1016/S0378-7753(01)00968-5