DOI QR코드

DOI QR Code

Characterization of Silicon Nitride Coating Films

Si-N 코팅막의 기계적 물성 및 구조 분석

  • Go, Cheolho (Department of Materials Engineering, Graduate School of Kyungnam University) ;
  • Kim, Bongseob (Department of Materials Engineering, Graduate School of Kyungnam University) ;
  • Yun, Jondo (Division of Advanced Materials Engineering, Kyungnam University) ;
  • Kim, Kwangho (Division of Materials Engineering, Pusan National University)
  • 고철호 (경남대학교 대학원 재료공학과) ;
  • 김봉섭 (경남대학교 대학원 재료공학과) ;
  • 윤존도 (경남대학교 신소재공학부) ;
  • 김광호 (부산대학교 재료공학부)
  • Published : 2005.05.01

Abstract

Silicon nitride coating films with various ratios of nitrogen to silicon contents were prepared and characterized. The film was coated on silicon substrate by sputtering method with changing nitrogen gas flow rate in a chamber. The nitrogen to silicon ratio was found to have values in a range from 0 to 1.4. Coated film was characterized with scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, nanoindentation scanning probe microscopy, x-ray photon spectrometry, and Raman spectrometry. Silicon nitride phase in all samples showed amorphous nature regardless of N/Si ratio. When N/Si ratio was 1.25, hardness and elastic modulus of silicon nitride film showed maximum with 22 GPa and 210 GPa, respectively. Those values decreased, when N/Si ratio was higher than 1.25. Raman spectrum showed that no silicon phase exist in the film. XPS result showed that the silicon-nitrogen bond was dominant way for atomic bonding in the film. The structure and property was explained with Random Bonding Model(RBM) which was consistent with the microstructure and chemistry analysis for the coating films.

Keywords

References

  1. J. Finster, E.-D. Klinkenberg, and J. Heeg, ' ESCA and SEXAFS Investigations of Insulation Materials for ULSI Microelectromics Vacuum,' 41 [7-9] 1586-89 (1990)
  2. V. Gottschalch, R. Schmidt, B. Rheinlander, D. Pudis, S. Hardt, J. Kvietkova, G Wagner, and R. Franzheld, ' Plasma-Enhanced Chemical Vapor Deposition of $SiO_{x}$/$SiN_{x}$ Bragg Reflectors,' Thin Solid Films, 416 224-32 (2002) https://doi.org/10.1016/S0040-6090(02)00704-6
  3. G. M. Ingo, N. Zacchetti, D. delia Sala, and C. Coluzza, ' X-Ray Photoelectron Spectroscopy Investigation on the Chemical Structure of Amorphous Silicon Nitride (a-$SiN_{x}$),' J. Vac. Sci. Tech., A7 [5] 3048-55 (1989)
  4. R. Padmanabhan and N. C. Saha, ' X-Ray Photoelectron and Auger Electron Spectroscopy Studies of Photochemical Vapor Deposition Silicon Nitrides,' J. Vac. Sci. Tech., A6 [4] 2226-31 (1988)
  5. I. Umezu, T. Yamaguchi, K. Kohno, M. Inada, and A. Sugimura, ' Preparation of $SiN_{x}$ Film by Pulsed Laser Ablation in Nitrogen Gas Ambient,' Appl. Surf. Sci., 197-198 376-78 (2002) https://doi.org/10.1016/S0169-4332(02)00343-4
  6. E. Dehan, P. Temple-Boyer, R. Henda, J. J. Pedroviejo, and E. Scheid, ' Optical and Structural Properties of $SiO_{x}$ and $SiN_{x}$ Materials,' Thin Solid Films, 266 14-9 (1995) https://doi.org/10.1016/0040-6090(95)06635-7
  7. H. Matsuki, K. Hoshino, T. Taguchi, Y. Ueno, and T. Hattori, ' Analysis of Plasma-Deposited $SiN_{x}$ Films Using XPS,' Techn. Report Inst. Electronics, Infomation, and Comm. Engr., 93 [46] 25-30 (1993)
  8. J. Masek and J. J Mares, ' Model of Inactive Nitrogen Incorporation in Amorphous Silicon: Nitridated Vacancy,' Phys. Status Sol. B, 135 [1] K33-K38 (1986) https://doi.org/10.1002/pssb.2221350151
  9. H. Kakinuma, M. Mohri, M. Sakamoto, and T. Tsuruoka, ' Structural Properties of Polycrystalline Silicon Films Prepared at Low Temperature by Plasma Chemical Vapor Deposition,' J. Appl. Phys., 70 [12] 7374-81 (1991) https://doi.org/10.1063/1.349732
  10. G. M. Ingo and N. Zacehetti, ' XPS Investigation on the Growth Model of a-$SiN_{x}$and Silicon and Nitrogen Chemical Bondings,' High Temp. Sci., 28 137-51 (1990)
  11. J. Robertson, ' The Electronic Properties of Silicon Nitride,' Phil. Mag. B, 44 [2] 215-37 (1981) https://doi.org/10.1080/01418638108222558
  12. S. Veprek and A. S. Argon, ' Mechanical Properties of Superhard Nanocomposites,' Surf. and Coat. Tech., 146-147 175-82 (2001) https://doi.org/10.1016/S0257-8972(01)01467-0
  13. N. Niederhofer, P. Nesladek, H. D. Mannling, K. Moto, S. Veprek, and M. Jilek, ' Structural Properties, Internal Stress and Thermal Stability of nc-TiN/a-SiN, nc-TiN/Ti-$Si_{x}$ and nc-($Ti_{1-y}Al_{y}Si_{x}$)N Superhard Nanocomposite Coatings Rearchjng the Hardness of Diamond,' Surf. and Coat. Tech., 120-121 173-78 (1999) https://doi.org/10.1016/S0257-8972(99)00451-X
  14. J. Patscheider, T. Zehnder, and M. Diserens, ' Structure-Performance Relations in Nanocomposite Coatings,' Surf. and Coat. Tech., 146-147 201-08 (2001) https://doi.org/10.1016/S0257-8972(01)01389-5
  15. M. Diserens, J. Patschejder, and F. Levy, ' Improving the Properties of Titanium Nitride by Incorporation of Silicon,' Surf. and Coat. Tech., 108-109 241-46 (1998) https://doi.org/10.1016/S0257-8972(98)00560-X
  16. F. Vaz, L. Rebouta, P. Goudeau, T. Gnardeau, J. Pacaud, J. P. Riviere, and A. Traverse, ' Structural Transitions in Hard Si-Based TiN Coatings: The Effect of Bias Voltage and Temperature,' Surf. and Coat. Tech., 146-147 274-79 (2001) https://doi.org/10.1016/S0257-8972(01)01395-0
  17. F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J. P. Riviere, A. Cavaleiro, and E. Alves, ' Characterization of $Ti_{1-x}Si_{x}N_{y}$ Nanocomposite Films,' Surf. and Coat. Tech., 133-134 307-13 (2000) https://doi.org/10.1016/S0257-8972(00)00947-6
  18. S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. D. Mannling, P. Nesladek, G. Dollinger, and A. Bergmaier, ' Composition, Nanostructure, and Origin of the Ultrahardness in nc-TiN/a- $Si_{3}N_{4}$/a- and nc- $TiSi_{2}$ Nanocomposites with Hv = 80 to $\geq$105 GPa,' Surf. and Coat. Tech., 133-134 152-59 (2000) https://doi.org/10.1016/S0257-8972(00)00957-9
  19. J. Petalas and S. Logothetidis, 'Tetrahedron-Model Analysis of Silicon Nitride Thin Film and the Effect of Hydrogen and Temperature on their Optical Properties,' Phys. Rev. B, 50 [16] 11801-16 (1994). https://doi.org/10.1103/PhysRevB.50.11801
  20. H. R. Philipp, 'Optical and Bonding Model for Non-Crystalline $SiO_{x}$ and $SiO_{x}N_{y}$ Materials,' J. Non-Crystalline Solids, 8-10 627-32 (1972) https://doi.org/10.1016/0022-3093(72)90202-5
  21. R. J. Temkin, 'An Analysis of the Radial Distribution Function of $SiO_{x}$,' J. Non-Crystalline Solids, 17 [2] 215-30 (1975) https://doi.org/10.1016/0022-3093(75)90052-6
  22. V. A. Volodin, M. D. Efremov, V. A. Gritsenko, and S. A. Kochubei, 'Raman Study of Silicon Nanocrystals Formed in $SiN_{x}$ Films by Excimer Laser or Thermal Annealing,' Appl. Phys. Lett., 73 [9] 1212-14 (1998) https://doi.org/10.1063/1.122130
  23. J. Zi, H. Buscher, C. Falter, W. Lduwing, K. Zhang, and X. Xie, ' Raman Shifts in Si Nanocrystals,' Appl. Phys. Lett., 69 [2] 200-02 (1996) https://doi.org/10.1063/1.117371
  24. H. Hayashi, K. Wakita, Y. Nakayama, and T. Kawamura, ' Nano-Crystalline Silicon in a-$SiN_{x}$:H Films,' Tech. Report Inst. Electronics, Infomation, and Comm. Eng., 91 [362] 45-9 (1991)
  25. Z. Igbal, S. Vepick, A. P. Webb, and P. Capezzuto, ' Raman Scattering from Small Particle Size Polycrystalline Silicon,' Solid State Comm., 37 993-96 (1981) https://doi.org/10.1016/0038-1098(81)91202-3