The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity

Sung-II Cho*, Chun-Soo Kim†, Dae-Seok Bae†, Kyung-Su Kim†, Moo-Young Song‡

*Radwaste Disposal Research Team, Korea Atomic Energy Research Institute,
†Dept. of Geology and Earth and Environmental Sciences

본 연구는 지하시험시설을 이용한 수리지질환경연구의 대안으로, 지하유류장치시설 건설과정 중 조사된 자료를 이용하여 지표조사단계에서 예측된 자료와 저장공동 물작시 확인된 자료의 대비를 통해 불확실성이 높은 단면 및 수리인자의 지하분포특성을 해석하여 조사방법의 문제점을 도출하고 보완방안을 모색해 보고자 하였다. 지표조사단계에서 예측된 6개 단면대 중 지하공동실 있어 그 위치와 방향이 비교적 일치하는 단면대는 NE-1 단 하나로 예측산토도는 매우 낮다. 본 연구에서는 지하공동 내 NE-1 단면내의 분포특성을 토대로 지표조사단계에서 BHTV 이미지를 이용한 정량적인 분류기준을 제시하였다. 일반단열은 실험이 급속에 따라 단열의 주 방향이 바뀌고 길이 및 린도는 감소하는 경향을 보이고 있다. 조사대상의 경사변화와 조사방향 및 조사규모 등에 따라 오차가 발생될 수 있으므로 조사에 따른 데이터 (investigation bias)를 가능한 한 최소화하여야 할 것이다. 지표조사단계에서 수리적 연결성에 대한 해석은 시추공 내에 주입이나 양수를 통한 지하수체의 교란 시 구간에 따른 수리지질학적 특성량화가 가능한 이중수위측정구선이나 다중패커시스템을 통하여 수위변화 및 지하수의 지하화특성에 대한 구간별 정밀계측이 요구된다. 수직 및 수평수위변에 의해 계측된 공동수면 수리전도도의 기하평균은 지표조사 시 지표부 해체대 및 종화대 영역을 제외한 평균값보다 약 2~3배 작은 값을 나타내며, 수평수위분의 기하평균 역시 수직수위분보다 약 6배정도 작게 나타났다. 수리전도도 역시 신뢰도 향상을 위해서는 시험공의 경사방향이 변동되지 않도록 조사편의를 최소화하고, 매질의 특성 및 시험목적을 고려하여 시험방법 및 해석식이 적용되어야 할 것으로 판단된다.

주요어: 단열체계, 수리전도도, 지하유류장치시설, BHTV, 다중패커시스템

This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of pre-
predicted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyzed by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2 -3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.

Key words: fracture, hydraulic conductivity, underground oil storage facility, BHTV, multi-packer system

서 론

결정질암반 내의 단열체계는 지구조운동에 의해 매우 복잡하고 불규칙한 분포특성을 보이며, 지하수체계는 앞반 내 투수성 단열의 기하학적인 분포특성을 의해 일차적으로 지배를 받게 된다. 따라서 지하암반 내 분포하는 단열체계, 일반의 투수성 및 수리적 연결성을 정확히 해석하는 것은 지하에 건설되는 다양한 시설의 구조적 안정성과 성능을 확보하고 지하수에 의한 피해를 최소화함에 있어 반드시 요구되는 과정 중에 하나이다.

단열체계 및 수리인자의 해석신탁도를 향상시키기 위한 노력은 최근 국내외적으로 많은 연구가 진행 중에 있으며, 국외의 경우 방사성폐기물체를 관련하여 지하시험시설을 이용한 연구를 통해 지질 및 구조 분야, 수리지질학, 일반지질학, 지구화학, 지질, 용질이동, 생태학분야로 세분화하여 각 분야별 해석신탁도와 이해도를 한단계 높이는 계기를 마련하였다 (Andersson et al., 2002). 또한 지하시험시설 건설 전지표조사 시 예측된 자료와 건설 후 확인된 자료와의 대비를 통해 조사의 문제점을 도출하고 이를 보완하여 조사 및 해석방법에도 많은 발전을 기여하였다.

국내의 경우 지하시험시설을 이용한 연구는 현재 초기단계에 있으며, 지하저생 시설 건설과정 중 지표 조사단계에서 예측한 자료에 대한 확인이나 문제점을 보완하는 연구는 현장여건 상 매우 미흡한 실정이다.

따라서 본 연구는 지하시험시설을 이용한 지하지질 환경연구의 대안으로 지하수자원지형시설 건설과정 중 도출된 자료를 통해 지표조사단계에서 예측된 자료와 지장공동 급착 시 확인된 자료와 대비해 봄으로써 물 확실성이 높은 단열 및 수리인자의 지하분포특성을 해석하고, 조사방법의 문제점을 도출하여 보완방안을 모색해 보고자 하였다.

지질 및 현황

연구지역의 지질은 Fig. 1과 같이 백악기 말 유천층 군의 화산암류 및 이를 관입한 불국사 화석암류의 알칼리감성화강암과 백암으로 구성되어 있다. 유천층군은 하위로부터 화산저착암과 절괴암을 포함하는 응봉산층, 응봉암질 역암과 녹색암이 주류를 이루는 신생리층, 봉화산용결용화암, 월페리안산암 순으로 구성되며 각 층은 경합적으로 높인다. 이들 화산암류의 형성 이후 백악기 후기에 소위 마산암이라 일컬은 알

Fig. 1. Geologic map of the study area.
단열체계 및 수리전도도의 해석실험도 향상을 위한 평가방법 연구

한국장석화강암이 관찰하였다. 이 지역의 화산암류는 북쪽 일부에 분포하는 화산섬성성층암이 신성리층을 제외하고 구성공물과 이에 포함되어 있는 암판의 크기가 종류가 다양하고 점착적으로 변화하고 있어 그 경계가 명확하지 않다(박희인 외, 1989).

본 연구지역에는 현재 건설이 완료되어 운영 중에 있는 유류 및 가스 지하저작공동이 위치하고 있으며, 추가저작시설의 건설을 위해 조사계획이 완료되어 현재 저작공동이 구축 중에 있다. 추가저작시설은 18 m (폭) × 30 m(높이) 규모로 지표로부터 약 최대 370 m, 최소 140 m의 심도에 위치하며, 경동 상부 26 m 지점에 수평수벽공 95개와 수직수벽공 63개가 설치되어 있고(Fig. 2b), 데우안지니어링에서 공동배면에서의 단열조사와 수벽공 입구부에 단일패커를 설치하여 정방주입/수위강하시험을 수행하였다(데우안지니어링, 2003a, 2003b).

추가저작시설의 기본설계조사 단계에서 수행된 지하지정 조사는 지표조사로 이루어져며, 이는 지표 지구물리탐사 및 시추조사, BHTV 검출, 시추공의 구간 (6-9 m)의 Lugeon 시험을 포함한다(플루에마니어링주, 1999; 한국석유공사-한국원자력연구소, 1999; 김경수, 2000). 추가저작시설 북서쪽과 남동 방향에는 국지주단열대(local major fracture zone) 규모의 FZ-1과 FZ-2 구조가 신규조사분석에 의해 예측되고 시추조사에 의해 일부 확인되었다(Fig. 2a).

단열체계

단열대

지표조사과정 중 선구조사에서 관찰되는 규모가 큰 광역단열대(regional fracture zone)나 국지주단열대(local major fracture zone) 규모의 방향성과 그 중요성은 알 수 있으나, 단열대 규모가 작은수록 불규칙한 연장과 방향성에 의해 지하매질에서 발달된 단열의 위치, 폭, 방향성을 정확히 예측하는 것은 매우 어려운 것으로 기존 연구에 의하여 보고 되었다(Rhén et al., 1997).

지표조사단계에서 위성영상분석, 지구물리탐사, 시추조사에 의해 예측된 국지규모의 단열대는 N50 ~ 60°E계열(F-1)과 N20 ~ 40°W계열(F-2), EW계열(F3-1 ~ 3), N30°E계열(F4)의 총 6개(Fig. 3a)로, 지하공동조사에서 확인된 단열대 중 그 위치 및 방향이 비교적 일치하는 것은 NE-1에 해당하는 F-1 구조대 하나로(Fig. 3b) 예측선도는 매우 낮은 것으로 확인되었다. 또한 NE-1단열대는 지하공동조사 시 C1에서 C3 공통으로 갈수록 분기되는 특성을 보이며, 지표조사 시 조사된 BHTV 이미지(플랜은지니어링주) SK 건설(주, 1999)

Fig. 2. Location of the surface boreholes and distribution of the water curtain holes
Fig. 3. The predicted and verified fracture zones around underground cavern.

Fig. 4. The BHTV images of fractures in the AO-2 borehole.
예를 들어 AO-8번공에서의 비교적 NE-1 단열의 분포특성의 정확히 확인된 반면 AO-2번공에서는 단열대의 분기되는데 특성에 의해 단열대의 경화된 구조와 특성 을 예측하기에는 많은 어려움이 있었다(Fig. 4, 5). 이처럼 지표노무와 시추공에서 조사된 단열대의 낮은 예측신뢰도는 1차적으로 연구지역의 고유특성에 의해 심도가 깊어지며 단열대 자체의 위치 및 폭, 방향의 다양한 특성에 의한 원인으로 판단할 수 있으며, 2차적으로 조사방법 및 해석의 오차에 의한 결과로 유추할 수 있다.

- 단열대와 교차되는 하나 이상의 시추공 여부
- 단열대와 비교적 직교하는 방향으로의 시추조사 여부
- 조사심도
- 지구물리탐사에서 나타나는 이상대와 단열대의 상관관계

이러한 요인들은 경제적인 여건이 충분히 벗받침된다면 어느 정도 신뢰도의 향상은 가능할 수 있다. 그러나 현실적으로 제한된 시추공 수와 위치에서 조사가 이루어지기 때문에 조사된 자료의 해석신뢰도를 높일 수 있는 방안이 요구되며, 국외의 경우 경쟁적인 분류기준을 통해 예측신뢰도를 향상시키는 계기를 마련하였다. Munier and Stanfors(2003)은 취성변형(brittle deformation)에 의해 형성된 단열빈도(fracture frequency)에 의해 단열체계의 분류기준을 제시하였으며, 단층벽(fault gouge)을 포함하는 단층핵(fault core)은 9 개/m 이상, 전이대(transition zone)의 경우 4-5 개/m, 암반 내 단위 m당 단열의 수는 4개 미만을 포함하는 것으로 정의하였고, Palmqvist(1990)는 단열대는 단열밀도가 주변 암반보다 상대적으로 높은 구간으로 정의하고, 단열대의 잠재적 범위는 폭 1m 이상, 단열빈도 5 개/m 이상 구간으로 기준을 정하였다.

본 연구에서는 단열빈도, 폭의 크기, 상대강도지수, 개구성 여부 등에 대한 비교적 정량적 해석이 가능한 BHIV(Bore Hole Televiewer)의 검출결과를 이용하여 좀 더 정량적인 분류를 할 수 있는 기준을 제시하였고, 단층핵과 전이대는 각각 파쇄대(crushed zone)와 손상대(damaged zone)로 명칭을 바꾸어서 사용하였다. 분류기준은 국외 분류기준을 참고로 하였다.

본 연구지역의 NE-1 단열대는 지하공동에서 확인된 가장 큰 규모의 단열대로 폭이 10 ~ 15m이고 연장 길이는 1 km 이상으로 추정되며 단열대 내에 혼재된 방해석 지하수에 의한 풍화가 심하고 단층조선이 나타나고 있다(Fig. 5). 반면 NW-1과 NW-2 단열대는 폭의 크기는 1 ~ 3m로 최소 300 m 이상의 연장길이를 갖는 것으로 관찰되며 단층경도가 약 0.2 m 정도로 통해 되어 있다. NE-1 단열대의 공동 내 분포양상과 지표조 사공에서 조사된 BHIV에 나타나는 전복 및 주시이미지를 대비하여 설정하였다. NW-1과 NW-2 단열대는 지표조사 시 단열대를 판단하는 시추공 설치가 이루

Fig. 5. Fracture map of the NE-1 fracture zone in the caverns.
어지지 않았기 때문에 BHTV 자료와 대비가 불가능하여 본 연구에서는 AO-8번공에서 확인된 NE-1 단열대 만을 비교대상으로 선정하였다.

AO-8번공의 시추조사 시 코어로징에 의해 확인된 NE-1 단열대의 특성은 RQD 값이 11~79 % (GL. -107.2 ~ -118.2 m)로 부분적으로 단층조성이 관찰되며 절리 면에 방해석이 충전되어 있다. 특히 파쇄가 심한 GL. -111 ~ -113 m 구간에는 단층조성이 많고 단층점토가 관찰되었다. BHTV에 인지된 NE-1 단열대 내 파쇄대의 폭은 약 1 m이며 공동에서는 1 ~ 1.5 m로 비교적 크기가 비슷하며, 손상대의 폭 역시 BHTV의 경우 3.5 m, 공동 내에서 약 4 ~ 4.5 m로 유사한 크기를 갖는 것으로 나타났다(Fig. 6).

손상대의 단위 m당 단열의 수는 BHTV의 경우 8개, 공동 내에서는 9개로, 손상대로 분류될 수 있는 단열의 수는 단위 m당 8개 이상을 포함함을 알 수 있다.

따라서 본 연구지역에서 단열대로 간주할 수 있는 단열폭의 규모는 국지단열대(local fracture zone)로 분류할 수 있는 최소크기인 1 m로 하였으며, 분류기준은 다음과 같다(Fig. 7).

- 단열대(fracture zone) : 파쇄대(crushed zone)를 포함하며 파쇄대 주변에 손상대(damaged zone)가 포함하고 폭의 크기는 1m 이상이다.
- 파쇄대(crushed zone) : 단열의 빈도가 단위 m당 10개 이상이거나, 단열을 샐 수 없음을 만 큼 매우 불규칙적으로 파쇄된 구간으로 단층비지나 단열층재물(infilling material)을 다양 포함하며 폭 0.3 m 이상의 규모에 해당한다. BHTV 이미지에서 진폭값과 상대강도지수가 상대적으로 매우 낮고(< 50%), 주시(travel time)가 상대적으로 매우 길다.
- 손상대(damaged zone) : 파쇄대 주변에 분포하는 폭 1m 이상의 구간으로, 손상대 내의 단열의 빈도는 단위 m당 6 ~ 9개이고 부분개구성 단열 및 개구성 단열을 다양 포함한다.
- 단열군(fracture cluster) : 단열의 빈도가 단위 m당 6 ~ 9개로, 부분개구성 단열 및 개구성 단열을 다양 포함하여 상대강도지수가 상대적으로 낮은 영역에 해당한다.
- 큰 폭의 개구성 단열(wide open fractures) : 단열폭은 0.02 ~ 0.3 m이며 경사각이 45° 이하이고, 진폭 및 주시미지에 두터운 연장성을 보이며 상대강도지수가 50% 미만인 개구성 단열이다.
- 개구성 단열(open fractures) : 틈의 크기가 0.02 m 이하로 진폭 및 주시미지에서 연장성이 뚜렷하게 나타나며 상대강도지수가 50% 미만이다.
- 부분개구성 단열(partly open fractures) : 진폭 및 상대강도지수가 모양에 비해 비교적 낮고, 부분적으로 주시미지에 나타나는 개구성 단열에 해당한다.
- 단한 단열(tight fractures) : 진폭미지미지에만 나타나 진폭 및 상대강도지수가 모양과 비교적 유사한
Fig. 7. Fracture classification on the BHTV images.
단열이다.
본 분류기준은 본 연구지역의 양조에 해당하는 화산암과 비교적 취성변형이 발생되는 영역에서의 NE-1 단열대만을 고려하여 분류기준을 제시하였으므로, 추후 다양한 양조와 암반특성에 적용하여 수정·보완되어져야 할 것이다.

암반단열

방향성

지표노두 30개 지점에서 축선법에 의해 조사된 총 935개 단열의 주 방향 Set 1은 N70°E/75°(NW/SE)이고, 지표조사공의 BHTV 자료에 의해 조사된 총 4062개 단열의 주 방향 역시 N65°E/88°(NW/SE)로 비교적 유사한 경향을 보여주었다(김경수, 2000). 그러나 지하공동 내 벽면에서 축선법에 의한 단열의 주 방향은 N10°~20°W/80°(NE/SW)로 지표노두 및 시추공에서 Set 2로 분류된 단열조와 유사한 방향성을 나타내었다(Fig. 8).

또한 단열조 분포를 보면 지표노두조사 결과에서는 지정사의 단열들은 거의 분포하지 않으나 지표시추공 및 지하공동 조사결과에서는 지정사 단열들이 하나의 단열조를 형성하고 있으며 특히 지표시추공에서는 단열조가 5개로 다양한 방향의 단열이 분포하는 것으로 해석되었다. 지표와 지하의 주 방향성이 다르고 단열조의 분포특성이 다른 이유는 1차적으로 단열생성 시 파괴유력 방향이 위치에 따라 다르게 작용하였을 가능성이, 지표부의 암반형층의 감소로 천부에 지정사를 갖는 충상 점리(sheeting joint)의 중복적인 발달에 따른 결과로 추측할 수 있다. 2차적으로 조사의 재현성으로 인해 조사대상에 따라 인지될 수 있는 단열의 어느 방향으로 변종된 결과로 판단할 수 있다.

따라서 조사대상의 경사각 및 경사방향, 조사방향에 따라 어느 한 단열조의 단열이 배제되거나 과도하게 조사될 수 있기 때문에 조사장의(investigation bias)에 의한 오차를 최소화할 수 있도록 조사대상과 조사방향이 정정된다면 비교적 높은 신뢰도를 기대할 수 있을 것이다.

크기

단열크기의 경우 산출평균값과 확률밀도분포에 따른 순선폴딩징 기법을 이용한 결과를 보면 고경사를 갖는 Set 1과 Set 2 단열조의 경우 지표조보다 지하에서 약 0.6~0.7배 작게 계산되었다. 이는 지하공동 내 조사대상이 최대 20m(가로) × 5m(세로)인 수직인 면으로 고경사 단열의 최대길이가 5m로 제한되었기 때문인 것으로 사료된다. 반면, 조사 대상의 규모가 유사한 저경사 단열의 경우에는 매우 유사한 값을 보인다(Table 1). 단열의 크기 역시 조사대상의 규모에 따라

Fig. 8. Orientation characteristics of the background fractures along the investigating location.
크기의 편차가 매우 크기 때문에, 조사대상은 가능한 한 최대한 크고 가로와 세로의 차이는 크지 않도록 선정되어야 할 것으로 판단된다.

표도

Stanfors et al. (1997)의 연구결과에 의하면 화강암 지역에서 단열의 빈도는 지표보다 지하에서 약 1.7배 정도 적게 분포하며, 석북암 지역에서도 2배 정도 작은 것으로 보고하였다. 본 연구지역에서는 고경사 단열 조의 경우 지표보다 지하에 더 적은 것으로 나타났다(Table 3). 투수성 단열의 빈도는 지표보다 지하에 더 적은 것으로 나타났다(Table 3). 투수성 단열의 빈도는 지표보다 지하에 더 적은 것으로 나타났다(Table 3). 투수성 단열의 빈도는 지표보다 지하에 더 적은 것으로 나타났다(Table 3).

<table>
<thead>
<tr>
<th>Set</th>
<th>N20°W/70 ~ 90°</th>
<th>N50°E/70 ~ 90°</th>
<th>N50°W/70 ~ 90°</th>
<th>Low dip angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcrop</td>
<td>Arithmetic mean(m)</td>
<td>3.65</td>
<td>3.12</td>
<td>3.52</td>
</tr>
<tr>
<td></td>
<td>Simulated fracture radius under lognormal distribution(m)</td>
<td>3.14</td>
<td>2.74</td>
<td>2.91</td>
</tr>
<tr>
<td>Cavern</td>
<td>Arithmetic mean(m)</td>
<td>2.13</td>
<td>2.18</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>Simulated fracture radius under lognormal distribution(m)</td>
<td>1.91</td>
<td>2.16</td>
<td>1.81</td>
</tr>
</tbody>
</table>

Table 2. Results of the fracture frequency(number/m).

<table>
<thead>
<tr>
<th>Set</th>
<th>N20°W/70 ~ 90°</th>
<th>N50°E/70 ~ 90°</th>
<th>Low dip angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcrop</td>
<td>0.77</td>
<td>1.01</td>
<td>0.38</td>
</tr>
<tr>
<td>Boreholes</td>
<td>0.95</td>
<td>1.19</td>
<td>0.49</td>
</tr>
<tr>
<td>Cavern</td>
<td>0.54</td>
<td>0.31</td>
<td>0.47</td>
</tr>
</tbody>
</table>
수리특성

수리적 연결성

본 연구지역 내 FZ-1과 FZ-2 구조대 주변의 수리특성은 상하부지하수대의 수리적 연결성에 따라 서로 다른 지하수특성을 나타내고 있는 것으로 해석되었다(조성일, 2005). 특히 FZ-1 구조대 주변은 동공굴작 전이중수위측정시설(double completion)에 의해 계층된 상하부의 수위차는 최대 약 120 m에 이르는 것으로 나타났으며, 동공굴작 중 FZ-1와 인접한 K-1공에 설치된 다중페커시스템(Table 4)에 의해 계측된 수위변화를 보면 상부 2 구간(Zone 1, 2)은 동공굴작에 따른 수위변화가 크지 않고 지하정공동과의 상부(Gallery)와 하부(Bench-1)구간을 골착하는 시기에 따라 수위창하 시기도 다르게 나타났다(Fig. 9). 따라서 지표조사단계에서 이러한 특성을 예측하기 위해서는 수리지질적 특성이 다른 구간과의 격리를 통한 계층이 반드시 요구되며, 주입이나 양수에 의한 지하수체의 교란에 따른 구간별 지하수위 및 지하화특성을 계측하는 것이 필수적인 것으로 사료된다.

수리전도도

수석 및 수평수복공에 의해 계산된 동공주변의 기하평균은 2×10⁹ m/sec으로 지표조사 시 지표관측공에서 계측된 풍화대 영역(GL. 0 〜 40 m)을 제외한 영역의 수리전도도 기하평균인 5×10⁹ m/sec(김경수, 2000)보다 약 2.3배 작은 값을 나타내었다. 심도 및 시추공의 경사에 따른 지하매질의 수리특성은 크게 두 가지로 설명될 수 있다.

제1, 심도의 증가에 따라 단열비도는 감소하고 틀의 크기 및 길이는 작아지기 때문에 수리적 연결성이 양호하지 못한 결과로 유추할 수 있다. 실제로 스웨덴의 Finnsjön site의 연구결과에 의하면 지표면으로부터 약 500 m 하부는 최상부보다 약 10배 정도 작은 특성을 나타냈으며(Andersson et al., 1991), Tammemagei and Cheislar (1996)는 다음과 같은 경험식에 의하여 심도가 증가함에 따라 수리전도도가 감소한다고 보고 하였다.

\[\log(K) = -1.65 \log(z) - 4.5 \] \hspace{1cm} (1)

\[K = 10^{-7 + z/250} \] \hspace{1cm} (2)

여기서, \(K \) = 수리전도도
\(z \) = 심도

둘째, 수리시험 방법 및 해석모델의 적용에 따른 차이로 해석가능하다. 수리시험은 지하매질과 지하수체 계특성에 따라 그 시험방법과 해석모델을 달리 적용할 수 있으므로 계산된 수리전도도 역시 다소 차이를 나타내게 된다. Andersson and Persson(1985)은 straddle 폐커시험에서 일반적으로 정상류 분석방법에 의한 수리전도도 값이 부정류 해석에 의한 경우보다 작게는 2 〜 3배, 경우에 따라서는 10 〜 20배 가량 더 큰 것으로 보고하였다. 본 연구에서는 수평수복공 자료를 이용해 계산된 정상류 분석이 부정류에 의한 해석값보다 산술평균의 경우 약 1.75, 기하평균은 1.18 배정도 높게 나타났다.

또한 수평수복공에서 계산된 수리전도도의 기하평균은 1×10⁹ m/sec보다 수직수복공의 기하평균 8×10⁹ m/sec보다 약 6배 정도 작게 계산되었는데, 이는 조사공의 정사에 따른 투수성 단열과의 교차확률에 따라
Table 4. Location of the straddle packer in K-1 borehole.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Elevation of the zone (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
</tr>
<tr>
<td>Zone-1</td>
<td>61</td>
</tr>
<tr>
<td>Zone-2</td>
<td>39.5</td>
</tr>
<tr>
<td>Zone-3</td>
<td>26</td>
</tr>
<tr>
<td>Zone-4</td>
<td>4</td>
</tr>
<tr>
<td>Zone-5</td>
<td>-17.5</td>
</tr>
<tr>
<td>Zone-6</td>
<td>-77.5</td>
</tr>
<tr>
<td>Zone-7</td>
<td>-115</td>
</tr>
</tbody>
</table>

Fig. 9. Evolution of the groundwater levels in the multi-packer system.
수리전도도 값이 과대 혹은 과소평가 될 수 있음을 시사한다.
김정수(2002)는 단일공 내에서 다양한 수리시험을 통해 천부의 지표동화에 대한 수립특성은 전공수간충격시험이나 수기시험에 효과적이며, 실험의 수립특성은 정압주입/수위강하시험이나 필스시험에 더 많다는 것을 보고하였다. 따라서 본 연구에서는 K-1공을 대상으로 다중파크시스템을 설치하기 전에 주변을 이용한 정압주입/수위강하시험(Fig. 10a)과 전공수간충격시험(Fig. 10b)을 수행하였고, 다중파크시스템을 설치한 후 구간별 필스시험(Fig. 10c)을 실시하여 시험방법 및 해석식의 차이에 의해 도출된 수리전도도를 비교해 보고자 하였다.

정압주입/수위강하시험에 의한 K-1공의 기하평균(정상류)은 8 x 10^4 m/sec로 전공수간충격시험에 의한 3 x 10^4 m/sec(Bouwer and Rice, 1976)보다 약 4배 정도 낮게 계산되었으나(Fig. 11). 전공수간충격시험은 수인공 전구간 중 투수성이 가장 높은 구간의 수립특성을 대변하는 것으로 보고(함세영 외, 2001)된 바와 같이, 본 연구결과에서도 천부 종합대체의 영향으로 비교적 높게 계산된 것으로 판단된다. 수박공에서 단일파크에 의한 전공주입/수위강하시험 결과도 전공수간충격시험과 같이 투수성이 높은 단일의 수립특성이 반영된 점을 고려하면, 수리전도도가 과대평가 되었을 것으로 예상되며, 수평수박공의 기하평균 값이 낮게 평가된 것을 보면 수평수박공에 교차반도가 높은 고성사 단열은 비교적 낮은 투수성을 갖는 것으로 유추할 수 있다.

다중파크시스템의 2, 4, 6구간의 필스시험 결과와 동일한 구간에 해당하는 주입/수위강하시험결과를 비교하여 보면, 낮은 수리전도도를 나타내는 6구간에서는 필스시험이 좀 더 낮게 계산되었고, 비교적 높은 값을 갖는 2, 4구간에서는 필스시험이 좀 더 높게 계산되었 다. 이러한 결과는 정압주입시험의 주입시험기기의 홀스와 주입수 자체의 압축성, 그리고 공내저류효과에 의한 영향으로 필스시험에 비하여 민감하게 반응하는 것으로 판단되며, 김정수(2002)에 의해서도 유사한 연구결과가 도출되었다.

이러한 관점에서 단열암반의 투수성을 평가하기 위한 수리시험을 계획할 경우, 전공수간충격시험 혹은 단일파크에 의한 주입/수위강하시험은 천부의 종화대를 포함하는 과체구간이나 주 투수성 구조에 대한 수립특성을 해석할 때 적합하며, 심도에 따른 구간별 수립특성을 해석하는 경우에는 이중파크를 이용한 일정구간 정압주입/수위강하시험 또는 다중파크시스템 내에서의

Fig. 10. Schematic diagram for various hydraulic tests.
필스시험이 고려될 수 있으나, 필스시험 중 더 높은 신뢰도를 기대할 수 있을 것이다.

결 론

지하유류저정시설 건설 시 지표조사단계에서 예측되고 지하공동 굴착 시 확인된 단열체계 및 수리인자
의 특성과 지표조사방법의 문제점 및 보완방안은 다음과 같다.

1. 지표조사단계에서 위성영상 및 DEM, 지구물리
 탐사, 시추조사, BHTV 등에 의해 예측된 6개 단열대 중
 지하공동에서 확인된 단열대와 비교적 방향성과
 위치가 유사한 단열대는 NE-1 단열대 하나로 매우 낮은
 예측신뢰도를 나타내었다.

2. 지표조사 시 최소한의 조사를 통해 단열대의 예
 측신뢰도를 향상시킬 수 있는 방안으로 BHTV 조사결
 과를 이용한 경량적 분류기준을 제시하였으나, 향후
 다양한 압종과 일반특성을 갖는 지역에서 적용하여
 수정 보완되어져야 할 것이다.
3. 본 연구지역 내 일반단열은 심도가 깊어짐에 따라 주 방향성이 변화하며, 크기와 반도는 고정시 단열조의 경우 각각 0.6~0.7배, 1.4~3.8배 정도 작게 분포하고, 저지역 단열조는 유사하거나 오히려 약 1.2배 정도 큰 것으로 조사되었다. 이는 조사대상의 방향 및 조사방향, 조사규모 등에 따른 조사편의성(investigation bias)에 의한 것으로 사료되며, 조사 시 조사편의를 최소화해야 할 것이다.

4. 지하공동성에서 조사된 투수성 단열의 반도는 지표조사 시 BHTV에 의해 투수성 단열로 예측한 개구성 및 반계구성 단열의 밀도보다 약 5~16배 정도 작게 나타났다. 따라서 BHTV에 의해 해석된 개구성 및 반계구성 단열을 모두 투수성 단열로 간주할 과대평가가 우려되며, flow logging test를 통해 개계 단열에 대한 수리특성 조사가 수반되어야 할 것이다.

5. 지표조사단계에서 심도 및 수평방향으로의 수리적 연결성을 예측하기 위해서는 이중수위측정시스템이나 다중페키시스템에 의해 수리지질학적 특성에 따른 영역을 각각진 후 양수나 주입에 의한 지하수의 교환에 따른 구간별 지하수위 및 지하수특성에 대한 계측이 요구된다.

6. 수리조도도는 시험공의 방향, 조사범위, 시험방법에 따라 해석하고자 하는 영역의 투수성이 과소 혹은 과대평가될 수 있으므로 조사편의를 최소화하고 연구목적에 맞는 시험방법이 선택되어야 할 것이다.

사 사

본 연구는 한국석유공사와 한국원자력연구소에서 공동으로 시행하는 연구개발사업에 의하여 수행되었다. 현장조사에 협조를 아끼지 않으신 한국석유공사 및 대우엔지니어링 관계자 여러분께 깊은 감사를 드린다.

참고문헌

김경수, 2000, 수치모델링을 이용한 지하원유취사시설의 수리지질학적 안정성 연구, 박사학위논문, 충남대학교 대학원, 212p.

대우엔지니어링(주) 시공관리기 OO 추가비축기지공사 공사평가보고서 제3권, 2003a.

대우엔지니어링(주) 시공관리기 수박공장기리시설 종합보고서, 2003b.

박병훈, 2000, 화산지질학적 분석에 따른 지하수계 변화에 대한 3차원 수치모델 해석, 박사학위논문, 서울대학교 대학원, 250p.

박희민, 박용안, 정지문, 1989, 광양도폭 지질보고서, 한국동력자원연구소 엘지엔지니어링(주), SK 건설(주), 1999, U-1 추가비축기지 조사설계 용역 지질조사보고서.

한국석유공사·한국원자력연구소, 1999, 일반지하수체계 특성 연구, 91p.

Comparison of predictions and observations.
Geology and Mechanical stability. SKB TR 97-04.
Tammemagi, H. Y. and Cheislar, J. D., 1996, Interim
rock mass properties and conditions for analysis of
a repository in crystalline rock, United States

배재석
한국원자력연구소 방사성폐기물처분연구부
305-353 대전광역시 유성구 덕진동 150번지
Tel : 042-868-2030
E-mail : ndsbae@kaeri.re.kr

김경수
한국원자력연구소 방사성폐기물처분연구부
305-353 대전광역시 유성구 덕진동 150번지
Tel : 042-868-2365
E-mail : kskim@kaeri.re.kr

송무영
충남대학교 자연과학대학 지질환경과학과
305-764 대전광역시 유성구 광동 220번지
Tel : 042-821-6423
E-mail : mysong@cnu.ac.kr

조성일
한국원자력연구소 방사성폐기물처분연구부
305-353 대전광역시 유성구 덕진동 150번지
Tel : 042-868-2064
E-mail : chosi@kaeri.re.kr

김천수
한국원자력연구소 방사성폐기물처분연구부
305-353 대전광역시 유성구 덕진동 150번지
Tel : 042-868-2063
E-mail : cskim@kaeri.re.kr