An Effect of Time Gating Threshold (TGT) on the Delivered Dose at Internal Organ with Movement due to Respiration

호흡에 의해 내부 움직임을 갖는 장기에 전달되는 선량에서 Time Gating Threshold (TGT)의 효과

  • Kim Yon Lae (Department of Biomedical Engineering, School of Medicine, The Catholic University of Korea, Department of Radiation Sciences, Seoul Health College) ;
  • Chung Jin Bum (Department of Biomedical Engineering, School of Medicine, The Catholic University of Korea) ;
  • Chung Won Kyun (Department of Radiation Sciences, Seoul Health College) ;
  • Hong Semie (Department of Radiation Oncology, Konkuk University College of Medicine) ;
  • Suh Tae Suk (Department of Biomedical Engineering, School of Medicine, The Catholic University of Korea)
  • 김연래 (가톨릭대학교 의과대학 의공학교실, 건국대학교 의과대학 방사선종양학교실) ;
  • 정진범 (가톨릭대학교 의과대학 의공학교실) ;
  • 정원균 (서울보건대학 방사선과) ;
  • 홍세미 (건국대학교 의과대학 방사선종양학교실) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실)
  • Published : 2005.06.01

Abstract

In this study, we investigated the effect of time gating threshold on the delivered dose at a organ with internal motion by respiration. Generally, the internal organs have minimum motion at exhalation during normal breathing. Therefore to compare the dose distribution time gating threshold, in this paper, was determined as the moving region of target during 1 sec at the initial position of exhalation. The irradiated fields were then delivered under three conditions; 1) non-moving target 2) existence of the moving target in the region of threshold (1sec), 3) existence of the moving target region out of threshold (1.4 sec, 2 sec). And each of conditions was described by the moving phantom system. It was compared with the dose distributions of three conditions using film dosimetry. Although the treatment time increased when the dose distributions was obtained by the internal motion to consider the TGT, it could be obtained more exact dose distribution than in the treatment field that didn't consider the internal motion. And it could be reduced the unnecessary dose at the penumbra region. When we set up 1.4 sec of threshold, to reduce the treatment time, it could not be obtained less effective dose distribution than 1 sec of threshold. Namely, although the treatment time reduce, the much dose was distributed out of the treatment region. Actually when it is treated the moving organ, it would rather measure internal motion and external motion of the moving organ than mathematical method. If it could be analyzed the correlation of the internal and external motion, the treatment scores would be improved.

본 연구는 호흡에 따라 내부 장기가 움직일 때, 내부 장기가 가장 안정적인 구간의 문턱 값(threshold)을 시간으로 설정한 후 선량분포에 대한 연구를 수행하였다. 일반적으로 정상적인 호흡주기 중에서 시간대비 내부 장기 움직임이 호기 상태에서 적게 나타난다. 그러므로 시간동기 문턱 값(time gating threshold, TGT)은 내부 장기 움직임이 가장 적은 호기 시 1 초 동안 움직일 때의 선량분포를 평가하였다. TGT를 설정했을 때 선량분포를 비교하기 위해 다음 조건으로 방사선을 조사하였다. 내부 장기가 1) 고정된 상태, 2) 문책 값 범위 내에서 움직일 때, 3) 문턱 값 범위 밖에서 움직일 때, 각각의 내부 장기 움직임 조건을 구동팬톰시스템으로 모사하였다. 그리고 필름 선량 측정법(film dosimetry)을 이용하여 비교 평가하였다. TGT를 1초로 설정하고 내부적 움직임을 고려하여 선량분포를 획득했을 때 치료시간은 증가하였다. 그러나 TGT를 1초로 설정한 것은 내부적 움직임을 고려하지 않은 선량분포 즉, 치료 조사면 내에 장기의 움직임이 없을 때와 비슷한 선량분포를 얻을 수 있었다. 그리고 문턱 詰없이 내부 장기가 움직일 때와 비교해서 반음영 영역에 불필요한 선량을 줄일 수 있었다. 또한 치료시간을 줄이기 위해서 문턱 값을 1.4초로 설정했을 때가 1초로 설정했을 때보다 시간 비에 따른 선량분포에 대해 효과적인 결과를 얻지 못했다. 즉, 시간은 줄었지만 치료영역 밖에 많은 선량이 분포하였다. 임상적으로 TGT를 설정해서 방사선 치료를 하기 위해서는 수학적인 계산 방법에 의한 내부 장기의 움직임을 표현하는 것이 아니라 실측에 의해서 모든 환자의 외부 움직임과 내부 움직임을 측정해야 한다. 또한 내부와 외부 움직임의 상관관계를 분석해서 환자의 호흡주기에 따른 내부 장기의 움직임 중에 이상적인 위치에서 문책 값을 설정 후 방사선치료를 시행하면 정상조직은 낮은 선량이 분포하면서 치료성적이 향상될 것이라 예상된다.

Keywords