DOI QR코드

DOI QR Code

Mycobacterium bovis BCG Rv2435c 유전자의 기능에 대한 연구

Studies on the Function of the Rv2435c Gene of the Mycobacterium bovis BCG

  • 이승실 (창원대학교 미생물학과) ;
  • 배영민 (창원대학교 미생물학과)
  • Lee Seung-Sil (Department of Microbiology, Changwon University) ;
  • Bae Young-Min (Department of Microbiology, Changwon University)
  • 발행 : 2005.06.01

초록

Mycobacterium hovis BCG 균주에 transposon을 사용하여 mutagenesis를 수행함으로써 mutant library를 제조하였다. 이 mutant library를 screening하여 항결핵제인 PA-824에 내성을 갖는 mutant들을 얻었고, M. bovis wild type에서는 정상적으로 생성되는 coenzyme $F_{420}$이 대부분의 이들 mutant들에서는 생성되지 않는다는 것을 알게 되었다. 세포 추출액을 HPLC로 분석해본 결과, 그 중에서 한 mutant는 $F_{420}$은 생성하지 않으나 그 전구물질인 F0는 생성하고 있음이 밝혀졌다. 따라서 이 mutant 에서는 $F_{420}$생합성 회로의 마지막 단계가 차단되어있음을 알 수 있다. 이 mutant를 inverse PCR을 통해 분석해본 결과, transposon이 Rv2435c유전자에 삽입되어있는 것을 확인할 수 있었다. Rv2435c유전자는 세포막에 결합되어있는 80.3 kDa의 단백질을 암호화하는 것으로 추정되고, 이 단백질의 N-말단은 periplasm에 존재하고 C-말단은 원형질에 존재하는 것으로 추정되고 있다. 원형질에 존재하는 C-말단은 원핵생물과 진핵생물들의 adenylyl cyclase들과 높은 유사성을 나타낸다. Adenylyl cyclase는 ATP로부터 cAMP를 생합성하는 효소이다 M. tuberculosis나 M. bovis의 genome에는 class III adenylyl cyclase를 암호화하는 것으로 추정되는 유전자가 모두 15개나 존재한다 특히 이들 중에서 Rv1625c 와 Rv2435c는 포유류의 adenylyl cyclase들과 높은 유사성을 가지는 것으로 알려져 있다 이 Rv2435c 단백질이 진정한 adenylyl cyclase인지를 확인하기 위하여 우리는 이 단백질 중에서 원형질에 존재하는 부분을 말단에 6개의 histidine을 첨부한 채로 대장균에서 발현시켰다. 대장균에서 이 단백질이 생성되는 것은 histidine이 첨부된 단백질을 Ni-NTA resin을 사용하여 대장균으로부터 분리함으로써 확인하였다. 그러나 이 단백질이 대장균에서 cya mutation을 complementation하지 못하였고, 따라서 이 단백질이 adenylyl cyclase 활성을 갖지 않음을 알 수 있었다. 자외선이나 hydroxylamine을 사용한 mutagenesis 또는 Rv2435c와 Rv1625c간의 토sion단백질을 만들어서, 이 단백질이 adenylyl cyclae로서의 활성을 획득하도록 하는 모든 시도는 실패하였다. 따라서 Rv2435c단백질이, F0가 $F_{420}$으로 변환되는 데에 영향을 미치는 방법이 cAMP를 생성함으로써가 아니라 다른 방법으로 영향을 미치고 있다는 것을 알 수 있었다.

library of the mutants was prepared by transposon mutagenesis of the Mycobacterium bovis BCG. We screened this library for the resistance to an anti-tuberculosis antibiotic, PA-824. Most of the mutants resistant to the PA-824 were not able to synthesize the coenzyme $F_{420}$ which is normally produced by the wild type M. bovis BCG strains. HPLC analysis of the cellular extract showed that one of those mutants which lost the ability to synthesize $F_{420}$ still produced F0. The insertion site of the transposon in this mutant was determined by an inverse PCR and the transposon was found to be inserted in the Rv2435c open reading frame (ORF). Rv2435c ORF is predicted to encode an 80.3 kDa protein. Rv2435c protein appears to be bound to the cytoplasmic membrane, its N-terminal present in the periplasm and C-terminal in the cytoplasm. The C-terminal portion of this protein is highly homologous with the adenylyl cyclases of both prokaryotes and eukaryotes. There are 15 ORFs which have homology with the class III AC proteins in the genome of the M. tuberculosis and M. bovis. Two of those, Rv1625c and Rv2435c, are highly homologous with the mammalian ACs. We cloned the cytoplasmic domain of the Rv2435c ORF and expressed it with six histidine residues attached on its C-terminal in Escherichia coli to find out if this protein is a genuine AC. Production of that protein in E. coli was proved by purifying the histidine-tagged protein by using the Ni-NTA resin. This protein, however, failed to complement the cya mutation in E. coli, indicating that this protein lacks the AC activity. All of the further attempts to convert this protein to a functional AC by a mutagenesis with UV or hydroxylamine, or construction of several different fusion proteins with Rv1625c failed. It is, therefore, possible that Rv2435c protein might affect the conversion of F0 to $F_{420}$ not by synthesizing cAMP but by some other way.

키워드

참고문헌

  1. Aronshtam, A. and M. G. Marinus. 1996. Dominant negative mutator mutations in the muti gene of Escherichia coli. Nucleic Acids Res. 24, 2498-2504 https://doi.org/10.1093/nar/24.13.2498
  2. Bae, Y. M. and L. Daniels. 2005. Mutations in the PPE genes that confer resistance to a nitroimidazopyran drug on Mycobacterium bovis strains. J. Life Sci. 15, 182-185 https://doi.org/10.5352/JLS.2005.15.2.182
  3. Barak, Y., O. Cohen-Fix and Z. Livneh. 1995. Deamination of cytosine-containing pyrimidine photodimers in UV-irradiated DNA. J. Biol. Chem. 270, 24174-24179 https://doi.org/10.1074/jbc.270.41.24174
  4. Bollag, D. M. and S. J. Edelstein. 1991. Protein methods. 2nd eds., Wiley-Liss Inc., New York
  5. Choi, K. P., T. B. Bair, Y. M. Bae and L. Daniels. 2001. Use of transposon Tn5367 mutagenesis and a nitroimidazopyranbased selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F420 biosynthesis by Mycobacterium bovis BCG. J. Bacteriol. 183, 7058-7066 https://doi.org/10.1128/JB.183.24.7058-7066.2001
  6. Cole, S. T., R. Brosch, J. Parkhill, T. Gamier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, S. Moule, J. Murphy, K. Oliver, J. Osborne, M.A. Quail, M.-A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitehead and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544Ⱐ潲楧楮Ⱐ慮搠周攠浡物湥⁦慵湡映乥眠婥慬慮携周攠灨祬潧敮礠潦⁰污獴楤猺⁁⁲敶周攠牯汥映偅吠獣慮湩湧⁩渠瑨攠周攠獴畤礠潮⁴桥⁤敡瑨映䭯牥慮周敯牥瑩捡氠獴畤礠潦⁴桥⁳楧湩晩周潵獡湤景汤⁃桡湧攠楮⁒敳楳瑩癩呩瑡湩畭⁅湤潳獥潵猠䥭灬慮琭獯晴呯祌潴潳⽁摡㫬认鳪낄⁁摡賭钄呲慮獭楳獩潮⁅汥捴牯渠䵩捲潳捯灥呲楴敲灥湯楤猠晲潭⁴桥敡癥猠潦呹灥⁉⁏獴敯来湥獩猠䥭灥牦散瑡㨠啮摥牳瑡湤楮朠偯獴ⵁ摯灴楯渠䉥桡啳攠潦⁒慤楯慣瑩癥⁔牡捥爠呥捨湩噅䝆⁳楧湡汬楮机⁩湴敧牡瑩潮⁡湤噥桩捬攠副畴楮朠睩瑨⁔業攠坩湤潷噩獵慬卅䕋㨠䄠䙵汬礠䅵瑯浡瑥搠䍯坡癥⁔牡湳景牭慴楯渠慮搠坡癥⁆潲坨礠摯⁃畳瑯浥爿⁔桥⁄祮慭楣猠潦奁倳›⁉浰牯癥搠䑥瑥捴楮映卩浩桴瑰㨯⽷睷⹫浰牣⹯爮歲迣芤蛣芯ꓧ뚭껤뢖谀鿦ꊰⷦ늹鏨ꒇ裨꺊鿦ꦟ䡍吠黦肧鿥鲰ꓣ膍跨놡꣣膙†胬ꂕ냬颥飬袘⃬ꊅꓬ鞐鰠뗪뢰귬ꂕ냬鶘⃬鶼耠ꓫ芴귫꾼냪뢈⃬麬闬閈闭馔밠룫辙锠鳬ꂕ볬ꂕ郬蒜⃫薸胭閙郬鲡듬鲡飬鞅頠ꀠ铬麐렮铬麐룬芰蔮铬麐룬蚌郫麀⃫납闬讝萠듬骩胬隑郬鶘⃫薸룭閙耠뷭鞘裫ꆜ될鳫辄耠鳪떭胫ꎌ賫름造賬ꆱ⃭颕뇪뎼闬鞐鳫꺬裬鶴냪뢉⁔䍓䌠鳬隴†賬붔곭骨볬鞐⃫貀鰠룬Ꞁ裬袠밠꣬薘⃢醢‭ꓬ誤될ꃫ辄냭閩锠賫鶼裫ꞈ⃭馔룪뎵胫나⃬ꆰ봠맭馔냬袠ꗬ閠룪뎠ꧬꂜ蓬鶘⃬颬鐠 https://doi.org/10.1038/31159
  7. Dautin, N., G. Karimova, A. Ullmann and D. Ladant 2000. Sensitive genetic screen for protease activity based on a cyclic AMP signaling cascade in Escherichia coli. J. Bacteriol. 182, 7060-7066 https://doi.org/10.1128/JB.182.24.7060-7066.2000
  8. Deckers, H. and G. Voordouw. 1996. The dcr gene family of Desulfovibrio: implications from the sequence of dcrH and phylogenetic comparison with other mcp genes. Antonie van Leeuwenhoek 70, 21-29 https://doi.org/10.1007/BF00393566
  9. Dye, C., M. A. Espinal, C. J. Watt, C. Mbianga and B. G. Williams. 2002. World-wide incidence of multidrug-resistant tuberculosis. J. Infect. Dis. 185, 1197-1202 https://doi.org/10.1086/339818
  10. Garnier, T., K. Eiglmeier, J. Camus, N. Medina, H. Mansoor, M. Pryor, S. Duthoy, S. Grondin, C. Lacroix, C. Monsempe, S. Simon, B. Harris, R. Atkin, J. Doggett, R. Mayes, J. Keating, P. R. Wheeler, J. Parkhill, B. G. Barrell, S. T. Cole, S. V. Gordon and R. G. Hewinson. 2003. The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA 100, 7877-7882
  11. Guo, Y. J., T. Seebacher, U. Kurz, J. U. Linder and J. E. Schultz. 2001. Adenylyl cyclase Rv1625c of Mycobacterium tuberculosis: a progenitor of mammalian adenylyl cyclases. EMBO J. 20, 3667-3675 https://doi.org/10.1093/emboj/20.14.3667
  12. Husson, R. N., B. E. James and R. A. Young. 1990. Gene replacement and expression of foreign DNA in mycobacteria. J. Bacteriol. 172, 519-524
  13. Linder, J. U. and J. E. Schults. 2003. The class ill adenylyl cyclases: multi-purpose signalling modules. Cell. Signal. 15, 1081-1089 https://doi.org/10.1016/S0898-6568(03)00130-X
  14. Lowrie, D. B., V. R. Aber and P. S. Jackett. 1979. Phagosomelysosome fusion and cyclic adenosine 3':5' -monophosphate in macrophages infected with Mycobacterium microti, Myco bacterium Bovis BCG or Mycobacterium lepraemurium. J. Gen. Microbiol. 110, 431-441
  15. McCue, J. A, K. A McDonough and C. E. Lawrence. 2000. Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res. 10, 204-219 https://doi.org/10.1101/gr.10.2.204
  16. Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  17. Padh, H. and T. A Venkitasubramanian. 1980. Lack of adenosine-3' ,5' -monophosphate receptor protein and apparent lack of expression of adenosine-3', 5' -monophosphate functions in Mycobacterium smegma tis CDC46. Microbios. 27, 69-78
  18. Pelicic, V., M. Jackson, J. M. Reyrat, W. R. Jacobs, Jr., B. Gicquel and C. Guilhot. 1997. Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94, 10955-10960
  19. Reddy, S. K., M. Kamireddi, K. Dhanireddy, J. Young, A. Davis and P. T. Reddy. 2001. Eudaryotic-like adenylyl cyclases in Mycobacterium tuberculosis H37Rv. J. Biol. Chem. 276, 35141-35149 https://doi.org/10.1074/jbc.M104108200
  20. Sambrook, J. and D. W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  21. Segovia-Juarez, J. I., S. Ganguli and D. Kirschner. 2004. Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theor. Biol. 231, 357-376 https://doi.org/10.1016/j.jtbi.2004.06.031
  22. Silhavy, T. J., M. L. Berman and L. W. Enquist. 1984. Experiments with gene fusions. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  23. Stover, C. K., P. Warrener, D. R. VanDevanter, D. R. Sherman, T. M. Arain, M. H. Langhorne, S. W. Anderson, J. A Towell, T. Yuan, D. N. McMurray, B. N. Kreiswirth, C. E. Barry and W: R. Baker. 2000. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405, 962-966 https://doi.org/10.1038/35016103
  24. Vallejo, A. N., R. J. Pogulis and J. R. Pease. 2003. Mutagenesis and synthesis of novel recombinant genes using peR, pp. 467-474, In Dieffenbach, C. W. and G. S. Dveksler (eds.), PCR Primer, 2nd ed., Cold spring Harbor Laboratory Press, Cold Spring Harbor, New York