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Fatigue crack growth and life have been estimated based on established empirical equations.
In this paper, an alternative method using artificial neural network (ANN)-based model
developed to predict fatigue damages simultaneously. To learn and generalize the ANN, fatigue
crack growth rate and life data were built up using in—-plane bending fatigue test results. Single
fracture mechanical parameter or nondestructive parameter can’t predict fatigue damage ac-
curately but multiple fracture mechanical parameters or nondestructive parameters can. Existing
fatigue damage modeling used this merit but limited real-time damage monitoring. Therefore,
this study shows fatigue damage model using backpropagation neural networks on the basis of
X-ray half breadth ratio B/B,, fractal dimension Dy and fracture mechanical parameters can
estimate fatigue crack growth rate da/dN and cycle ratio N/N; at the same time within
engineering limit error (5%).

Key Words : Fatigue Damage Modeling, Artificial Neural Networks (ANN), Fatigue Crack
Growth Rate, Cycle Ratio, Estimated Mean Error

1. Introduction

Mechanical failures have caused many injuries
and much financial loss. No exact percentage is
available, but many books and articles have sug-
gested that between 50 and 90 percent of all mec-
hanical failures are fatigue failure. To be effective
in averting fatigue failure, it is essential for a
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designer to have a good working knowledge of
analytical and empirical techniques of predicting
fatigue failure so that fatigue failure during the
prescribed design life may be prevented.

Fatigue crack growth rate can be expressed in
terms of stress intensity factor range 4K or effec-
tive stress intensity factor Jes on the basis of
crack closure concept. the former and latter were
suggested by Paris and Elber, respectively. As cor-
relating parameters for the fatigue crack growth
rate in the plastic-elastic region, J~integral range
4] is proposed but breaks a definition of J-inte-
gral because it doesn’t include unloading process.
The fatigue life was represented as a function of
plastic strain range Jep at low-cycle fatigue and
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stress amplitude Jo at high-cycle fatigue.

Fatigue resistance of material is estimated by
fracture mechanical parameters, but there is a
sharp difference between fatigue crack growth
rate and fatigue life due to various loads and
materials, and environmental factors. Especially,
in case that there is a short crack or no notch on
surface, the existing estimation method of fatigue
fracture behavior can’t be adapted because fatigue
life or fatigue crack growth rate is influenced by
microstructure properties of material. Therefore,
fatigue damage can’t be estimated by only single
mechanical parameter. A considerable error shall
occur between actual and estimated fatigue dam-
age and be reduced by using some mechanical
parameters simultaneously.

Joo and Cho (1996a) investigated the fatigue
crack growth modeling by ANN. Its input units
and output units consisted of elastic-plastic frac-
ture mechanical parameters and fatigue crack
growth rate respectively. The scatter band esti-
mated from the existing empirical equation show-
ed factors of 2 on fatigue crack growth rate. But
the fatigue crack growth modeling by neural net-
work prepared crack growth data with two and
three point representation schemes and predicted
the crack growth rate for unlearned test condition
with a mean error of 5%.

Okuda and others (1996) developed neural net-
work-based model representing the stress-strain
behavior of high temperature material. They used
plastic strains and their gradients as the units of
input and output layers and predicted the stress-
strain diagram for unlearned data with an error of
less than 3%.

Wu and others (1993) showed that with a neur-
al network-based material modeling methodo-
logy, the stress-strain behavior of a material was
captured within the distributed weight structure
of a multilayer feed forward neural network
learned directly on the stress-strain data obtained
from experiments. The general applicability of the
approach was illustrated in the construction of a
composite material model for reinforced concrete
in a biaxial stress state by learning stress-strain
results on behaviors of reinforced concrete panels
tested in both pure shear and combined shear
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with normal stress. However, above-mentioned
modeling methods couldn’t estimate the material
behavior at real-time due to the limit of repre-
sentation schemes.

In this study, a new and alternative approach is
developed known as the ANN for the synthetical
estimation of fatigue damage. It estimates crack
growth rate da/dN and cycle ratio N/Ny using
X-ray half-value breadth ratio B/ B, fractal di-
mension Dy and fracture mechanical parameters,
simultaneously.

2. Theoretical Background of ANN

2.1 Structure and learning algorithm of
ANN

Figure 1 shows the multilayer neural networks
which consist of input units, hidden units and
output units. A neuron is denoted by the hollow
circle in the figure and has a high-dimensional
input vector and one single output vector which is
a non-linear function of the input vector and a
weight vector. This weight vector is adjusted in a
learning phase by using large sets of examples and
a learning rule. The learning rule adapts the
weight of all neurons in neural networks to learn
an underlying relation in the learning examples.
The central idea of a neural network is that all
the weights can be adjusted so that the networks
exhibits some desired or interesting behavior.
The learning algorithms used in this study is the
backpropagation algorithms, which propagates
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Fig. 1 Block of backpropagation neural networks
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the output error, back to each weight in the net-
works.

When a pattern between input layer data and
output layer data is recognized and stored within
connection weight matrix, a learning of ANN is
completed. A new output data is obtained, when
unlearned input layer data is substituted into a
connection weight matrix. If the output layer data
is converged to target value of mean error, the
ANN will have a generalizing capacity.

Error function E, between target value and
actual output value of input pattern P is as
follows :

Ep=1/22(tp;-0p;)® (1

E, . (Error for data pattern P)?2
tp; . Target value of j-th unit at output layer
0p; . Output value of j-th unit at output layer

Eq. (2) is obtained by steepest descent method
and is used to update the connection weight
between units.

pr,-,-(n+ 1) :776pj+afdpa)ji<ﬂ) (2)

. Learning epochs
7 . Learning rate
@ . Momentum rate
4y Variation of connection weight
Op; . Error signal of j-th unit at step #

A Learning and generalizing capacity of ANN
is estimated by the difference between output
values and target values of ANN. It is called by
estimated mean error (error). Its definition is as
follows :

I ¢neum (17) B ¢ (P) l

_1Z
=UE 1400

¥V p=1

(3)

where, ¢ () is a target value for input layer unit,
7 is number of learning data used in learning and
generalization and Gueuro (p) is output value of
ANN for input layer unit. It is assumed that when
the estimated mean error is converged within 0.05,
ANN has a very good accuracy of modeling.
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3. Estimation of Fatigue Damage
Using Destructive and
Non-Destructive Parameters

The specimens used in this study were a flat
plate type with a curvature radius of 39 mm.
Notch specimen had a micro-hole defect with a
diameter of 50 #m and a depth of 10 um at its
center. Fatigue life of notch specimen with micro-
hole defect was 2530~4780 cycles and fatigue life
of unnotched specimen was 2530~4780 cycles so
that the change of fatigue life due to micro—hole
defect was only a little. The micro-hole defect
which was less than critical crack size don’t had
little influence on fatigue strength. Thus, micro-
hole defect specimen was used for this study
because main crack growed at micro-hole defect
and was measured with ease.

Also, fatigue test was controlled to be stress
ratio —1 using in-plane bending fatigue tester
(Mori testing machine co., model 5171) (Joo et
al., 1998a). Crack growth rate da/dN, cycle ratio
N/Ny and fatigue damage estimation parameters
were based on the test result of Al 2024-T3 alloy
examined in previous work by the authors (Joo
et al., 1998a ; Kim, 1998 ; Jang et al., 1999). The
fatigue testing was stopped at interval of same
cycle ratio regularly and fatigue damage parame-
ters were estimated at the time.

Table 1 shows tensile test results for 2024-T3
aluminum alloy.

3.1 Estimation of crack growth rate da/dN
by (d0/05) " a”

It is very difficult to measure the shape of
surface crack for calculation of stress intensity
factor. The growth rate of surface crack couldn’t
be estimated by stress intensity factor (Tanaka,
1982). Crack growth rate was correlated well

Table 1 Mechanical properties of 2024-T3 alloy

Yield Tensile [Elongation| Young’s
Material | strength | strength 5 moudlus
] o5 (MPa) |0 (MPa)) (%) | E (GPa)
2024-T3 380 507 21.6 77.02




1396

B0 (8%}

qopo?

Crack growth rate da/dN{(mm/cycle)

lo«li Ak i i
10" 107 10 10°

(Aa/qils)»ix’&»la(),fﬁ (mm(‘r GT)
Fig. 2 Relation between crack growth rate da/dN
and (do/ oys) *%a>*

with (do/oys) and crack length a. All the data
obtained under each test condition form wide
scatter band of either da/dN —(do/ays) rela-
tionship or da/dN — a relationship. The ex-
pressions of fatigue crack growth behavior are as
follows.

da/dN=A(do/oys)™ (4)
da/dN=B(a)" (5)

Exponent m shows an average gradient at da/
dN —(do/oys) diagram and is 4.64 in case of
the material. Exponent # is an average gradient
at da/dN — a diagram and 0.67 in case of the
material. Fig. 2 presents all the results on crack
growth rate as function of fracture mechanical
parameter (4o/oys) **a™¥ (Hironobu Nishitani,
1985). All the data obtained under each test
condition fell within narrow scatter band. If we
assume the relationship of one type of form:

da/dN= 4o/ oys)**a*

3.2 Estimation of cycle ratio N/N; by X-
ray half-value breadth ratio B/ B,
In order to analyze the X-ray half-value
breadth, X-ray diffractometer that adapts the
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characteristic X-ray of Cr-K, was used. When
measuring the Half-value breadth, parallel beam
optics was used and the X-ray incident angle was
fixed to 0°. X-ray diffraction strength curve is
obtained at each cycle ratio N/N;. Half-value
breadth was the diagram breadth at 1/2 of maxi-
mum strength fnex in X-ray diffraction strength
curve. Therefore, half-value breadth ratio B/B,
means a ratio of half-value breadth B at any cycle
ratio over half-value breadth B, at initial cycle
ratio (Park et al., 1998).

Figure 3 shows the relationship between X-ray
half-value breadth ratio B/B, and cycle ratio
N/Nyin Al12024-T3 alloy (Joo et al., 1998a) . At
the beginning of fatigue life, X-ray half-value
breadth ratio B/B, decreased rapidly at initial
stage of fatigue life. So the data is excluded in
linear regressed data and is omitted in Fig. 3.
Except for initial stage of fatigue life, X-ray half-
value breadth ratio B/B, decreased slowly as
cycle ratio N/ Ny increased but at the last stage of
fatigue life, it decreased rapidly like initial stage
of fatigue life. Also the straight line in Fig. 3 is
linearly regressed with least square method. The
gradient of line varies according to the stress am-
plitudes, and the more increased the stress am-
plitude, the more increased the gradient. Fig. 3
shows dependence of stress amplitude Ag for
X-ray half-value breadth ratio B/B, at observ-
ed cycle ratio N/N;. The more increased stress
amplitude, the more increased X-ray half-value
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breadth ratio B/ B,. This result is because initia-
tion and growth of short crack by formation of
cyclic slip band is sensitive to stress amplitude
and number of cycle.

3.3 Estimation of cycle ratio N/N; by
Fractal dimension Dy

Fatigue crack shape has a irregular form, not
primary straight line. As applied load gets larger,
crack shape gets more complicated. This section
will apply above crack characteristic to fatigue
life estimation.

Mandelbert (1983) suggested fractal dimension
Dy, the ratio of logarithmic number of subpart
for logarithmic scale factor in order to represent
complexity of curve shape. In this study, the box-
counting method is applied to determine the
fractal dimension of crack shape. It was measured
at each cycle ratio.

Figure 4 shows fractal dimension Dy of fatigue
crack shape at each cycle ratio N/ Ny. The fractal
dimension D, increases with nearly linearly with
the increase of cycle ratio N/N;. The more in-
creased stress amplitude the more increased the
whole fractal dimension Ds. However, in case of
stress amplitude 4o=262 MPa, the gradient of
regression line is very steep because fractal di-
mension Dy is the lowest at initial fatigue life and
the highest at final fatigue life stage.

This result shows that fatigue damage can’t be
estimated by only fractal dimension D, because
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fractal dimension Dy increases in accordance with
cycle ratio N/N; but it depends on initial crack
shape and material structure strongly.

4. Result and Examination
of Fatigue Damage Modeling

4.1 Fatigue damage modeling parameters

and data pattern

For fatigue damage analysis, there were the test
conditions that was used as learning data sets
(respectively, 4o=225 MPa, 262 Mpa, 330 MPa).
After the learning, generalization is attempted at,
using prediction data set (Jo=303 MPa), which
falls inside the learning domain (interpolation).

Figure 5 represents the basic architecture of
ANN for fatigue damage modeling.

Number of input units : there were five units in
the basic structure. These five input units corre-
sponded to real measurable parameters (stress
amplitude Ao, X-ray half-value breadth ratio
B/ B,, fractal dimension Dy, crack length @ and
fracture mechanical parameter (Adg/gys) +%a®%.

Number of output units : There are altogether
two typical fatigue damage parameters. Crack
growth rate and cycle ratio corresponded to the
two output units. .

ANN parameters arrived at optimum values
which gives minimum error, after the successful
phase are given in Table 3. Before arriving at this
optimum, the range of values were shown in
Table 2. The table represents initial conditions of

da/dN NN,

| © 10 Units |

, a (4o, /17_5,3)"'6‘ 7
Fig. 5 Architecture of ANN in fatigue damage

modeling
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ANN for fatigue damage modeling.

In order to optimize ANN parameters, one
parameter is changed constantly and other para-
meters are fixed in the condition of Table 2. The
ANN was learned according to varying condi-
tions. When the learning error is minimized, it is
said that the ANN parameters is optimized.

Table 3 represents the ANN parameters which
is determined by above-mentioned method (fixed
rate method). Also, Table 4 shows rate transfor-
mation method, which changes each rate in ac-
cordance with number of learning in order to re-
cover defect of the fixed rate method that learning
and momentum rates are fixed regardless of num-
ber of learning. Learning and momentum rates in
Table 3 have the same as case 5 in Table 4.

0
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42 Estimation of fatigue damage by fatigue
damage modeling

4.2.1 Estimation of fatigue damage by opti-
mization of initial learning conditions
The symbols indicating the learning in Figs.
6, 8 and 10 are the same as them in Figs. 2, 3, and
4 and shows learning result by ANN. Solid line
is regressed by experiment data used for learning.
Also solid line of Figs. 7, 9 and 11 related to
generalization is the same as above figures for
learning but dotted line shows the estimation of
fatigue crack growth rate and cycle ratio using
ANN.
Figures. 6 and 7 show the learning and generaliz-
ation results of ANN according to learning condi-

Table 2 Initial conditions for learning of ANN

No. of Hidd No. of hidd .
o- o Hhdden o-© . tdden Learning rate Momentum rate No. of data No. of epochs
layer units
1 10 0.1 0.9 51 100000
Table 3 Optimal conditions and estimated mean error or learning of ANN
No. of No. of .
Parameter Hidden Hidden Learning Momentum No. of No. of
. rate Rate data epochs
: layer units
Optimal conditions 1 6 0.9 0.9 51 2000000
Estimated da/dn 0.0738 0.0243 0.06523 0.13015 0.0243 0.0140
mean error N/N; 0.01101 0.0100 0.02502 0.03908 0.0100 0.0049
Table 4 Change of momentum and learning rate with number of epochs
h
Epochs 55000 40000 60000 80000 100000
Case Rate
Learning rate 0.9 0.7 0.5 0.3 0.1
Case 1
Momentum rate 0.9 0.7 0.5 0.3 0.1
Learning rate 0.1 0.3 0.5 0.7 0.9
Case 2 -
Momentum rate 0.1 0.3 0.5 0.7 0.9
Learning rate 0.9 0.7 0.5 0.3 0.1
Case 3
Momentum rate 0.1 0.3 0.5 0.7 0.9
Learning rate 0.1 0.3 0.5 0.7 0.9
Case 4
Momentum rate 0.9 0.7 0.5 03 0.1
Learning rate 0.9 0.9 0.9 0.9 0.9
Case 5
Momentum rate 09 0.9 0.9 0.9 0.9
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tions of Table 3. The learning errors of ANN are
within engineering limit error 0.05 because they
are 0.014 in case of crack growth rate da/dN
and 0.0049 in case of cycle ratio N/N;. However,
The generalization errors of ANN exceed an
engineering limit error 0.05 because they are 0.151
in case of crack growth rate da/dN and 0.2785
in case of cycle ratio N/Ny. It is observed that
the predictivé capability of ANN is very poor.
It is well known in ANN approaches that trans-
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formation or combinations of parameters fnay
describe the problem more effectively than the
individual parameters themselves. Combination
of parameters for ANN was selected by previéus
papers (Kim, 1998). Even though the ANN is
learned much enough, the data ranges of X-ray
half-value breadth ratio B/ B, and fractal dimen-
sion Dy are 0.93376~1 and 0.97182~1, respec-
tively. Hence an attempt should be made to trans-
form certain parameters. We propose a data trans-
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Table 5 Estimated mean error of learning and generalization of ANN with data transformation method

Error Case Case 1 Case 2 Case 3 Case 4 Case 5
" Estimated mean da/dn 0.0513 0.0111 0.0172 0.0168 0.0129
Error of learning N/N;y 0.0098 0.0030 0.0039 0.0043 0.0047
Estimated mean da/dn 0.0828 0.0732 0.0932 0.0488 0.0692
Error of generalization N/Ny 0.0541 0.2559 0.2265 0.0321 0.3053

formation method which controls data artificially
in order to improve the poor recognition capabili-
ty of learning pattern in next section 4.2.2.

422 Estimation of fatigue damage by data
transformation method
Fatigue damage is sensitive to the variation of
X-ray half-value breadth ratio B/ B, and fractal
dimension Dy. These parameters need to trans-
form the data range using following equations.

(B/By)'=10(N/Ny) +B/Bs (6)
Df/=10(N/Nf) +Df (7>
(B/Bo)’: Rescaled value of B/By
Dy : Rescaled value of Dy

Table 5 shows the learning and the generaliz-
ation results of ANN by means of data trans-
formation method. In both of section 4.2.1 and
case 5 of Table 5 the modeling is reasonably
accurate except for the generalization result of
cycle ratio N/N;. The learning and generaliza-
tion results of the ANN after transformation of
parameter are superior to them before transfor-
mation of parameters. Especially, the generaliz-
ation error of crack growth rate da/dN after
transformation of parameters is reduced at 1/2
and then it is shown that the learning and gener-
alization results of ANN are very dependent on
the data range.

Figures 8 and 9 show the learning and general-
ization results for case 5 of Table 5. Crack growth
rate da/dN and cycle ratio N/N; learnings are
produced at engineering limit error 0.05 level but
crack growth rate da/dN and cycle ratio N/Ny
generalizations aren’t produced. Especially, the
dispersion the dotted line about the solid line in
Fig. 9(b) is a result of inaccuracies in the ANN.

These inaccuracies are due to the lack of a de-
terministic relationship between the inputs and
outputs. Cycle ratio N/N; has a great error be-
tween the beginning and middle stage of fatigue
life. Also, the learning error is the lowest in case
2 but the generalization error is the highest in case
2 and is the lowest in case 4 in which there are no
considerable character in learning process. This
result indicates that ANN has an enough error
restoration capacity for unlearned data in spite of
inaccurate mapping of data pattern.

4.2.3 Estimation of fatigue damage by rate
transformation method

Figures 10 and 11 show the learning and gen-
eration results of ANN on the basis of learning
and momentum rates of case 4. The learning error
is higher than that of other rate selection methods
but the generalization error is the lowest (0.0488
in case of crack growth rate da/dN and 0.0321 in
case of cycle ratio N/Ny).

42.4 Estimation of cycle ratio N/N; by
crack growth equation and ANN

The difference between parameters for optimi-
zation of ANN and parameters by rate selection
method is due to the distribution characteristics
of the connection weights between the input and
output units which recognize the data pattern of
ANN.

1
Ao {(do/4)"a"]
=143X 10_3[(Ad/dys) 4'64a0'67]
where C(1/1.43X107%), m(4.64), and #(0.67)
are material constants that were determined ex-

(8)

perimentally. Please refer to previous papers
(Jang et al., 1999). The cycles required for crack
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growth may be calculated by solving this equa-
tion for dN and integrating both sides

[ el (e
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Initial crack is often assumed to exist at a certain
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N/N; learned by ANN with data transfor-

mation

location in the structure. In eq. (9), initial crack
length a, is assumed to be regarded as 0.05 mm.
Final crack size a, is the crack length corre-
sponded to N/N;=0.99 from g-N/ Ny relations-
hip. In case of Jo=303 MPa, the number of cycle
to fracture Ny is 29078 by eq. (9) but measured
number of cycle to fracture Ny is 43400. So, the
measured and predicted data show 33% error.
This is an indication that the crack growth equa-
tion has no regard for crack initiation cycles N;.

17

Neural networks

Crack growth rate da/dN(mm/cycle)

]()-f; - i - n sdal n i Kbkl )
T 10 107 100

(AO‘/O"VSYLM a!),(}? (mmU.G?)

(a) Unit da/dN at output layer

&

@

St
T

1
e
T

@
%
¥

Ratio of half-value breadth B/B,

0.88 L
0.1 i

Cycle ratio NV,
(b) Unit N/N;y at output layer
Fig. 9 Crack growth rate da/dN and cycle ratio
N/ Ny predicted by ANN with data transfor-
mation




1402 Dong-Woo Lee, Soon-Hyeok Hong, Seok-Swoo Cho and Won-Sik Joo

Above approach is not useful in Al 2024-T3 alloy
(the material used in this study), whose crack
initiation cycles take up most fatigue life.

In Fig. 12, the predicted cycles ratio was com-
pared with those obtained from the experiment.
One is predicted by eq. (8) and another is pre-
dicted by ANN. For measured cycle ratio N/
N;=0.99, the cycle ratio N/N; estimated by
crack growth equation is 0.67 but the cycle ratio
N/N; predicted by ANN is 0.963. It can be

10° ¢
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+ | Sym. : Neural networks.
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Fig. 10 Crack growth rate da/dN and cycle ratio
N/N; learned by ANN with floating rate
method

clearly understood that the cycle ratio obtained
from the learned ANN shows good agreement
with that from the learned ANN compared with
that obtained from the crack growth equation.
The ANN approximates cycle ratio better than
the crack growth equation. This result is an in-
dication that the number of cycle to crack initia-
tion N; is recognized by various parameters dur-
ing learning process.

Therefore, the results prove that the ANN
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which learns failure & fracture process can be
used to replace the crack growth equation to
estimate the cycle ratio on unlearned data points
with higher accuracy and reliability.

5. Conclusion

The main objective of this study was to intro-
duce a new and alternative method for the esti-
mation of fatigue damage. ANN can provide
accurate representations of the crack growth rate
and cycle ratio from relatively small experiment
data points. Also, ANN can predict fatigue dam-
age behavior better than other current fatigue life
estimation parameters. The following conclusions
can, therefore, be drawn from the present review.

(1) The ANN optimized by initial learning
conditions can learn crack growth rate da/dN
within engineering error but can not generalize
cycle ratio N/N; within engineering error.

(2) Data transformation method which has
good recognition quality improves learning and
generalizing capacity of ANN much more than
classical scaling method.

(3) ANN constructed by data transformation
method has better generalization accuracy than
learning accuracy.

(4) The estimation error of cycle ratio N/Ny
with single parameter can be reduced by con-
structing ANN with various nondestructive and
mechanical parameters.
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