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( Analysis of FTIR Spectra in Organic Inorganic Hybrid
Type SiOC Films )
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Abstract

Organic-inorganic hybrid type thin films are the next generation candidates as low~k materials. SiOC films are analyzed

the bonding structure by the red and blue chemical shift using the fourier transform infraredspectra. Conventional chemical shift
of organic chemistry is a red shift, but hybrid type SiOC films were observed the red and blue shift. The chemical shift
originates from the interaction between the C-H bond and high electronegative atoms, and the blue shift in SiOC films is caused
by the porosity due to the increase of the electron rich group such as much methyl radicals. The bonding structures of SiOC
films are also divided into the Si-O-C cross-link structure and the Si-O-C cage-link structure due to the chemical shifts. The
Si-0-C cross-link structure progressed the adhesion attributed to the C-H bond elongation in the reason of the red shift, and

the dielectric constant also decreases.

Keywords : high electronegative oxygen, Si-O-Si cross-link, Si-O-C cross-link, Si-O-C cage-link

I. Introduction

In the past forty years, the semiconductor industry
is based on the inorganic silicon, silicon dioxide

insulators and aluminum metal. However, there has
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been a research effort in organic electronics to
improve the ultra large scale integration (ULSI)

devices!

, because the silicon carbide has proved its
ability to be used efficiently under high temperature
rather than the SiO2%. For semiconductors, two
major classes of organic materials are photoresists
and insulators. The organic materials as insulators
are considered instead of silicon dioxide dielectric
typically used on-chip throughout the industry. But

the organic materials as low dielectric materials are
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also required to overcome the signal propagation
delay and cross talks between wilingsm. In the past
decades, relevant low dielectric materials have
introduced organic materials such as fluorinated
amorphous carbon (a-CF) films® and " hydrogenated
amorphous carbon (a-C:H) films®® by the chemical
(CVD).  These

organic-inorganic hybrid type carbon doped silicon

vapor  deposition days, an
oxide (SiOC) films have focus on the promising low
dielectric materials”. It is known that SiOC films
have the low dielectric constant due to the porosity
and cross-link structure, but the reason of the
chemical shift in SiOC films is not well known. The
generation of the red and blue shifts is key of
examination about the reason of the decreasing the
dielectric constant, because the chemical shift is
directly related with the bonding structure of SiOC

®  The conventional chemical shift of organic

films
compound is known the red shift by the elongation of
C-H bond, the blue shift at experimental results was
reported by some researchers”. The surface of the
thin films was progressed the adhesion by the effect
of the cross-link bonding stmcturem], the red shift
originated from the C-H bond elongation and
cross-link structure,

In this study, the chemical shift of SiOC films was
researched by the fourier transform infrared spectra.
SIOC  films  are classified
according to the chemical shift and the formation of
the main mode. SiOC films with Si-O-C cross-link
structure were studied the reason of the decrease the

dielectric constant.

into three properties

II. Experiments

Low-k organosilicate films were deposited by
inductively coupled plasma chemical vapor deposition
(ICPCVD)  using mixture of  gaseous
bistrimethylsilylmethane (BTMSM, [(CHs)3Sil.CHs)
and oxygen. The flow-rate ratio of O/BTMSM (Ar)
was varied, but total flow was 20 sccm. The films
and then
annealed at 500 °C for 30 minutes in a vacuum. The

a

were deposited at room temperature,

=1
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BTMSM was vaporized and carried by argon gas at
40 °C from a thermostatic bubbler. High-density
plasma about 10" ¢cm™ was obtained at low pressure
with an rf power of 300 W in ICPCVD, and the base
pressure was ~10° Torr in each experiment. FTIR
spectra were obtained in absorbance mode through
by the fourier transform infrared (FTIR) spectrometer
(IFS120HR). FTIR used to

determine the bonding configuration of the films.

spectroscopy was

Film thickness was meastred using a field-emission
scanning electron microscope (FESEM, S-4700) and
an ellipsometer (Gaertner L116C). The dielectric
constant of the films was obtained by C-V
measurements (hp4280A) using an MIS (AV/Si-O-C
film/p-Si) structure.

II. Results and Discussion

Fig. 1
as—deposited samples

shows the primary FTIR spectra of
in SiOC films, which the
samples were deposited according to the flow rate
ratio of O2BTMSM. The sample with the flow rate
ratio of Oy BTMSM=3:17 (sccm) does not shows the
characteristic of hybrid type SiOC films, because of
too much alkyl groups. The strong CH bonds about
2000 cm” indicate conventional characteristic of
organic materials, and the band from 670 cm™ to 950
cm’ is also related with CH, (n=1, 2, 3). There
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Fig. 1. FTIR spectra of as-deposited SiOC
films.
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another films without O2BTMSM=3:17 (sccm) could

come under hybrid type SiOC films, which the FTIR

spectra of the samples feature by low frequency.
C-0 mode is band from the peak at 950 cm™ to the

peak at 1250 cm . Si-O-C asymmetric stretching

vibration mode is broad band from the peak at 950 cm™
to the peak at 1350 cm *, and the broad vibration mode
around 3500 cm™ is the characteristic for that of -a
hydrogen-bond. The sharp signal at 1270 cm’ is
Si—-CHs bonds. There are CHs bending mode at 1450
cm”, C-H stretching mode at 2900 em ', respectively
'8l But the formations from 700 cm™ to 950 cm * in the
hybrid type SiOC films are distinguished from that of
the film with OxBTMSM=3:17 (sccm). In view of the
main mode near 1000 cm”, the intensity of the film
with Op:BTMSM=11:9 (sccm) is the smallest height,
but that of the film with O;BTMSM=12:8 (sccm) is the
largest height, in spite of, the difference of the flow
rate ratio is very little. These results show an abrupt
variation of the chemicals shift and the C-O bond does
not sustain this condition, which it has low density of
methyl radicals and increase high electronegative
oxygen. In the end, the elongation of C-H bond by
oxygen occurs the red shift at the film with
O2BTMSM=11:9 (sccm).

Fig. 2 shows clearly the FTIR spectra from 700 cm
to 1400 cm ' in hybrid type SiOC films. Hybrid type
SiIOC  films are classified
according to the flow rate ratio; organic, hybrid and

into three properties
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Fig. 2. FTIR spectra from 700 cm’ to 1400

cm ™ in hybrid type SIOC films.
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inorganic properties. There are the Si-O-C bond with
sharp signal at 1270 em™, and the C-O bond without
signal at 1270 cm’L. SiOC films with organic properties
have two peaks in the rage of C-O bond from 950 cm
to 1250 cm . SiOC films with hybrid properties also
have two peaks in the rage of Si-O-C bond from 950
em’ to 1350 cm”, but SiOC films with inorganic
properties have one peak in the rage of Si-O-C bond
from 950 cm to 1350 em™.

The bonds from 700 cm™ to 950 em™ consist of Si~C
bond at 740 em™', C-O bond at 810 em™ and Si-O bond
at 890 cm . SiOC films with inorganic properties are
stronger Si-C (740 cm™) bond than any other peaks,
and SIOC films with hybrid properties are stronger
Si-O (890 cm ") bond than any other peaks, and SiOC
films with organic properties are stronger C-O (810
cm™) bond than any other peaks. The main modes near
1000 cm™ are deconvoluted by fitting the data with a
numberof Gaussian peaks as shown in Fig. 3, 4 and 5.

Fig. 3 shows the deconvoluted FTIR spectra in the
range from 950 cm™ to 1250 cm ™ in SiOC films with
organic properties.
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The deconvoluted spectra of C-O
bonding mode in the wave number range
from 950 cm ' to 1250 ecm ™’ in SIOC fims
with organic properties, (a) the sample with
OBTMSM=5:15, (b) the sample with O
BTMSM=10:10, (c} the sample with O
BTMSM=11:9,

Fig.
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There is the first Si-O-C cage-link, the second
Si-O-C cross-link and the third Si-O-Si cross-link.
The first Si-O-C cage-link is related with the porosity
in the films, which the pore is made from steric
hindrance of methyl radicals. Therefore, the size of the
first peak becomes small due to the decrease of the
BTMSM flow rate. The second Si-O-C cross-link in
the sample increases relatively, and the peak of the
main mode (950 cm-1~1250 cm-1) moves to high
frequency at 1105 cm-1, it is called by the blue shift.

Fig. 4 and 5 show the deconvoluted FTIR spectra in
the range from 950 cm™ to 1350 cm™ with the various
O/BTMSM flow rate ratio. They show that two peaks
change to one peak according to the increase the
oxygen.

Fig. 4 shows the Si-O-C main mode of SiOC films
with hybrid properties, which Si-O-C main mode
consists of the first and second Si-O-C cross-link and
third Si-O-Si cross-link and Si-CHs at 1270 cm’.
Therefore, there are two peaks because of two kinks of
cross—link in the S1-O-C mode. The changing to high
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Fig. 4. The deconvoluted spectra of Si-O-C

bonding mode in the wave number range from
950 cm™ to 1350 cm* in SIOC fims with hybrid
properties, (@) the sample with OxBTMSM=12:8,
(b) the sample with Ox BTMSM=137, (¢} the
sample with Ox BTMSM=14:6,
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frequency of the main peak causes the superior
Si-O-Si cross-link than the Si-O-C cross-link as a
function of the increase of oxygen flow rate. These
results show the conventional red shift, which it is
explained by the elongation of C-H bond, because of
the inductive effect between high electronegative atom
oxygen and the C-H bond of Si-CH; (1270 cm)
according to the increase of oxygen flow rate.

Fig. 4(a) shows the peak of the lowest frequency of
the main mode in SIOC films with hybrid properties.
This result shows the relative high content of the
Si—O-C cross-link in the samples, and then the carbon
content should be also higher than any other sample in
SiOC films with hybrid properties.

Fig. 5 shows the deconvoluted spectra of Si-O-C
bonding mode in the wave number range from 975 cm *
to 1350 cm™ in SiOC films with inorganic properties.
There are the first Si-O-C cross-link and the second
Si-O-~Si cross-link and the peak of Si-CH3 at 1270
cm~1. The main mode of SiOC films with inorganic
properties consists of mostly Si-O-Si cross-link,
because of weak Si-O-C cross-link, therefore, the
main mode is not also divided into two peaks. The
Si-0-Si
cross-link than any other bond in the sample.
Consequently, the Si-O-C modes of SiOC films must

deconvolute spectra also show larger
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Fig. 5 The deconvoluted spectra of Si-O-C

bonding mode in the wave number range
from 975 cm ™ to 1350 em ' in SIOC films
with inorganic properties.
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Fig. 6. FTIR spectra of SIOC fims in the
Wav? number range from 700 cm™ to 975
cm .

distinguished by the bonding structure from the results
of the deconvolute spectra as shown in Fig. 4 and 5.

Figure 6 shows the FTIR spectra of SiOC films in
the wave number range from 700 cm ® to 975 cm™.

The band from 700 cm™ to 975 cm ' consists of
Si-C, C-0 and Si-C bond. The organic properties have
a strong bond of Si-C peak, because the carbon need
to made pores in the films. The hybrid properties have
a strong Si-O bond, because oxygen need to made the
cross-link bonding structure. The FTIR spectrum of
SiOC films with inorganic properties is the broad band
from 700 cm™ to 975 cm_l, in spite of others is the
band from 700 cm* to 950 cm L. Therefore, The band
from 700 cm™ to 975 cm’ need to be classifed as
Si-0O-5i bond in SiOC films with inorganic properties
due to the increase of the Si-O-Si cross-link as
shownin Fig. 5. The lowest dielectric constant of SiQC
films is 2.1 at the annealed sample of hybrid properties
with O:BTMSM=12:8 (sccm). Si-O-C  cross-link
structure of hybrid properties is the bonding structures
of ideal low-dielectric materials because of good
flatness.

IV. CONCLUSION

SiOC films using the CVD method are divided into
three properties, which these properties change

(3%5)
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mostly according to the flow rate ratio during the
deposition. The properties of SiOC films were
researched by the analysis of the red and blue shifts
in FTIR spectra. The red and blue shifts originate
from the interaction between the high electronegative
atoms and the C-H bonds. The red shift makes the
Si-O-C cross-link structure in SiOC films by the
elongation between oxygen and C-H bond. Si-O-C
cross-link structure of hybrid properties improves the
films
condition. SiOC films with hybrid properties were

adhesion of the due to weak boundary

also obtained the lowest dielectric constant.
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