Effect of Carbon Nanotube Pre-treatment on Dispersion and Electrical Properties of Melt Mixed Multi-Walled Carbon Nanotubes / Poly(methyl methacrylate) Composites

  • Park Won Ki (Department of Chemical Engineering, Yonsei University) ;
  • Kim Jung Uyun (Department of Chemical Engineering, Yonsei University) ;
  • Lee Sang-Soo (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Kim Junkyung (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Lee Geon-Woong (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Park Min (Polymer Hybrids Research Center, Korea Institute of Science and Technology)
  • Published : 2005.06.01

Abstract

Multi-walled carbon nanotubes (MWNTs) pre-treated by concentrated mixed acid or oxidized at high temperature were melt mixed with poly(methyl methacrylate) (PMMA) using a twin screw extruder. The morphologies and electrical properties of the MWNT/PMMA composites were investigated. The thermally treated MWNTs (t-MWNTs) were well dispersed, whereas the acid treated MWNTs (a-MWNTs) were highly entangled, forming large-sized clusters. The resulting electrical properties of the composites were analyzed in terms of the carbon nanotube (CNT) dispersion. The experimental percolation threshold was estimated to be $3 wt\%$ of t-MWNTs, but no percolation occurred at similar concentrations in the a-MWNT composites, due to the poor dispersion in the matrix.

Keywords

References

  1. S. Iijima, Nature, 354, 56 (1991) https://doi.org/10.1038/354056a0
  2. T. W. Ebbesen and P. M. Ajayan, Nature, 358, 220 (1992) https://doi.org/10.1038/358220a0
  3. L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett., 76, 971 (1996) https://doi.org/10.1103/PhysRevLett.76.971
  4. P. Ball, Nature, 382, 207 (1996) https://doi.org/10.1038/382207a0
  5. C. M. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, Appl. Phys. Lett., 70, 1480 (1997) https://doi.org/10.1063/1.118568
  6. E. T. Thostenson, Z. F. Ten, and T. W. Chou, Compos. Sci. Tech., 61, 1899 (2001) https://doi.org/10.1016/S0266-3538(00)00133-0
  7. S. Subramoney, Adv. Mater., 10, 1157 (1998) https://doi.org/10.1002/(SICI)1521-4095(199810)10:15<1157::AID-ADMA1157>3.0.CO;2-N
  8. R. Haggenmmueller, H. H. Gommans, A. G Rinzler, J. E. Fischer, and K. I. Winey, Chem. Rhys. Lett., 330, 219 (2000) https://doi.org/10.1016/S0009-2614(00)01013-7
  9. K Lozano, J. Bonilla-Rios, and E. V. Barrera, J. Appl. Polym. Sci., 80, 1162 (2001) https://doi.org/10.1002/app.1200
  10. Z. Jin, K. P. Pramoda, G Xu, and S. H. Goh, Chem. Phys. Lett., 337, 43 (2001) https://doi.org/10.1016/S0009-2614(01)00269-X
  11. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000) https://doi.org/10.1063/1.126500
  12. L. S. Shadier, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett., 73, 3842 (1998) https://doi.org/10.1063/1.122911
  13. Y. Wang, J. Wu, and F. Wei, Carbon, 41, 2939 (2003) https://doi.org/10.1016/S0008-6223(02)00262-2
  14. J. Liu, A. G Rinzler, H. Kai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriquez-Macias, Y. S. Shon, T. R. Lee, D. T. Cobert, and R. E. Smally, Science, 280, 1253 (1998) https://doi.org/10.1126/science.280.5367.1253
  15. S. Lefrant, J. P. Buission, J. Schreiber, O. Chauvet, M. Baibarac, and I. Baltog, Synth. Metals, 139, 783 (2003) https://doi.org/10.1016/S0379-6779(03)00264-9
  16. S. B. Sinnott, J. Nanosci. Nanotech., 2, 113 (2002) https://doi.org/10.1088/0957-4484/2/3/002
  17. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon, Science, 282, 95 (1998) https://doi.org/10.1126/science.282.5386.95
  18. G.-W. Lee, J. I. Lee, S.-S. Lee, M. Park, and J. Kim, J. Mater. Sci., 2005, in press
  19. D. Wei, R. Dave; and R. Pfeffer, J. Nanoparticle Research, 4, 21 (2002) https://doi.org/10.1023/A:1020184524538
  20. P. Potschke, S. M. Dudkin, and J. Alig, Polymer, 44, 5023 (2003) https://doi.org/10.1016/S0032-3861(03)00451-8
  21. D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London, 1994
  22. M. Sahimi, Applications of Percolation Theory. Taylor and Francis, London, 1994
  23. I. Balberg, Philos. Mag. B, 56, 991 (1987) https://doi.org/10.1080/13642818708215336
  24. J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer, 40, 5967 (1999) https://doi.org/10.1016/S0032-3861(99)00166-4
  25. R. Andrews, D. Jacques, M. Minot, and T. Rantell, Macromol. Mat. Eng., 287, 395 (2002) https://doi.org/10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S
  26. B. Safadi, R. Andrews, and E. A. Grulke, J. Appl. Polym. Sci., 84, 2660 (2002) https://doi.org/10.1002/app.10436
  27. J. R. Hagerstrom and S. L. Greene. Electrostatic Dissipating Composites Containing Hyperion Fibril Nanotubes, Commercialization of Nanostructured Materials, Miami, 2000
  28. P. Potschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002) https://doi.org/10.1016/S0032-3861(02)00151-9
  29. R. Haggenmmueller, H. H. Gommans, A. G Rinzler, J. E. Fischer, and K. I. Winey, Chem. Rhys. Lett., 330, 219 (2000) https://doi.org/10.1016/S0009-2614(00)01013-7
  30. B. Miller, Plastics World, 54, 73 (1996)