Journal of Magnetics 10(2), 71-75 (2005)

Calculation of the Hubbard U Parameters byvthe Solid Atom Method
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An effective method, i.e., the solid atom method, is suggested to obtain the Coulomb interaction parameter, U,
and the Hund exchange coupling constant, J, for use in the LDA+U calculation. The parameters are obtained
self-consistently during the: LDA+U calculation. The method is applied to typical transition metal oxides and
MnBY! (BV'=S,Se,Te). The U values for the transition metal oxides have similar magnitude to previous calcula-
tions although they are obtained by a much simpler method. MnB"'s have been characterized as crossroads
materials between charge transfer and band insulators by the LDA+U calculation.
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1. Introduction

Electronic and magnetic properties of a solid can be
understood theoretically by electronic structure calcu-
lations on the base of the density functional theory [1].
Many body effects due to the Coulomb interaction among
electrons are usually considered within the local density
approximation (LDA) [2]. LDA is a kind of mean field
theory which is adequate for materials without strong
correlation effect. However, for materials with the strong
correlation such as the transition metal oxides and the
high-temperature cuprate superconductors, it is essential
to consider the strong correlation effect correctly into
theoretical consideration. Well-known examples among
transition metal oxides are FeO and CoO that LDA fails
to give correct insulating ground states but describe it
metallic [3].

Electrons in the s- and the p- orbitals responsible for the
bonding can be described properly by using conventional
LDA band calculations. However, the LDA energy bands
may not describe correctly the highly correlated transition
metal d-electrons and excited states. Therefore, it is
necessary to treat the highly correlated d-electrons
separately from the bonding electrons. The LDA+U
method [4, 5] is suitable for this kind of calculations,
where the strong correlation effect is considered effec-
tively by introducing a Hubbard type interaction in the
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description of the localized orbitals. LDA+U method is a
simple and fast method to include the correlation effect
compared to other sophisticated ones like LDA+GW [6]
or LDA+DMFT [7].

The LDA+U method requires the Coulomb interaction
parameter, U, and the Hund exchange coupling constant,
J. Choosing proper values for U and J constitutes another
problem in utilizing the LDA+U method. In usual
LDA+U calculations, these values are determined from
other independent calculations and then they are kept
constant in the self-consistent procedure. Several methods
have been proposed to calculate the U values such as the
cellular method [8] or the supercell methods [4, 9-11). In
the supercell methods, the central atom is treated as an
impurity with variable occupation number in the corre-
lated orbitals. Usually, the calculation of U is very
involved, since one should consider all possible screening
mechanisms as well as the large unit cell. Thus, it is
desirable to devise an easy method to obtain the U values.

In this study, we have devised a simple method to
calculate U and J, what we call a solid atom method
(SAM). In this method, U and J values are evaluated by
solving an atomic problem where the charge density in an
atomic sphere is taken from the charge density of the
solid state calculation. Difference from the usual atomic
problem is that the potential obtained from the solid state
charge density is used in solving the Schrdinger-like
equation. Hence, the potential for the atomic problem has
the form of the muffin-tin potential. If U and J values are
obtained by SAM, they can be given as input parameters
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for next LDA+U calculations. U and J values are
calculated at each iteration during the self-consistent loop
until the self-consistency criteria are satisfied. We have
tested our method with typical transition metal chalco-
gens.

This paper is organized as follows: In Sec. 2, we
provide a formalism for SAM to obtain the Coulomb
interaction parameter, U, and the Hund coupling constant,
J, and, in Sec. 3, tested our SAM on typical strongly
correlated electron systems, namely, 3d-transition metal
oxides and MnB"(B"'=S,Se, Te). Final conclusions follow
in Sec. 4.

2. Methodology

In SAM, we make use of the differential definition for
U. In the spin polarized case, U is defined as [12]
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where E(n;;n|) is the total energy of the system with
n; and n, electrons in each localized spin orbital. By
using Janak's theorem [13], the LDA eigenvalues are
related to the differential of the total energy functional,
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where i is the band index. Then, Eq. (1) reduces to
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This corresponds to the usual definition of U by Slater's
transition-state rule [14]. One can regard this as a finite
difference form of
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which allows one to evaluate U by numerical differenti-
ation. Here, the formalism is presented only for 3d
transition metal compounds while it can be easily
extended to 4f orbitals [15]. Due to screening by other
electrons, the magnitude of the Coulomb interaction in
the solid system should be smaller than the atomic value.
The Hund exchange. constant .J is obtained from the
relation between the exchange splitting and the magnetic
moment of the atom,
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where m is the magnetic moment due to the d electrons.
The self-consistent LDA+U procedure is as follows.
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First, LDA eigen-solutions are obtained for a system self-
consistently. Second, an atom is isolated for which the U
and the J values are to be extracted. We call this isolated
atom as the solid atom, because the atom has the charge
density and the potential given by the solution of the solid
state Schrddinger-like equation. Then, numerical differ-
entiation of Eq. (4) is performed to obtain the U value.
The occupation number of the d-orbital is changed
slightly to induce the change of the energy level. In this
process, it is assumed that the slight change in 4-
occupation number is screened by valence s-electrons in
the solid atom and that the slight change of charge
distribution does not affect the overall charge distribution
in the solid atom. During the calculation, the total number
of electrons in the solid atom is conserved. One should
make the change of occupation number as small as
possiblé to satisfy the above assumptions. Third, with the
Coulomb interaction parameter U obtained, the LDA+U
Hamiltonian is constructed for the solid. For LDA+U
calculation, we have used a rotationally invariant LDA+U
code [16, 17] implemented in the first principles lineariz-
ed muffin-tin orbital method within the atomic sphere
approximation (LMTO-ASA) [18, 19]. The rotationally
invariant form of LDA+U [20] is convenient since the
crystal structure of solid is considered automatically in
the formalism although the original one [4] depends on
the crystal symmetry. Again, the second and the third
procedure are repeated until the self-consistent U value
and the electronic structure are obtained.

Eq. (4) can be expressed more generally as
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where « and g denote spin indices. However, different
values of U are obtained when the order of differentiation
in spin indices is changed, that is,
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Hence, in actual calculations, we have used the spin-
averaged value for U,

U=3(Up + Upp) ®)

For example, in CoQ, the value U=9.8 eV shown in Table
1 is the average of U;; =93 eVand U; =103 eV.

It is well known that the ratio of F*/F? is constant near
0.62 for most atoms, where F* and F* are the Slater
integrals [14]. We have obtained F'/F? by the direct
integration of the wave function and we have found that
this ratio is nearly constant, around 0.62, for all transition
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Table 1. Calculated Coulomb interaction parameter (U), Hund coupling constant (J), energy gap (E,) and the magnetic moment.

Energies are in eV.

U J E, M (us)
Present Other Exp. Present Other  Present  Other Exp. Present  Other Exp.
MnO 53 6.9% 3.6 5.554.0° 0.88 0.86* 2.32 3.5° 3.6-3.8° 4,78 4.61* 4.79% 4.58°
FeO 8.5 6.8% 4.6° 6.05,5.7° 0.89 0.89° 3.60 3.2% 2.4° 3.75 3.62° 3.32°
CoO 9.8 7.8%,5.0° 6.5%,5.4° 0.89 0.92° 3.84 3.2 2.4% 2.75 2.63° 3.35%,3.8°
NiO 1.1 69%,5157.9° 7.3%69° 0.86 0.95 3.36 3.1° 43,4.0° 1.70 1.59°  1.77% 1.64° 1.90°
Fe;0,  7.7,83 4514 0.97, 0.94 0 0.36° 0147 436,4.23 4.1

“Ref. 4. °Ref. 11. ‘Ref. 9. °Ref. 23. °A. Tanaka and T. Jo, J. Phys. Soc. Jap. 63, 2788 (1994). 'V.. C. Rakhecha and N. S. Satya Murthy, J. Phys. C 11,

4389 (1978).

metal oxides tested in this study. The U and J parameters
are related to the Slater integrals by
F+F

U=F, J="—3
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Thus, if values of U and J are given, the Slater parameters
can be calculated directly from them.

3. Results

We have applied SAM to typical binary materials with
TBY! type (T = late 3d transition metals, BY' = O,S,Se,Te).
First series of materials are late transition metal oxides
where the transition metal changes from Mn to Ni. The
correlation effect is known to be large for the late
transition metals. In the second series of calculations, U
and T are obtained for manganese chalcogen compounds,
MnBY! (BV! =, Se, Te). All calculations are performed at
experimental lattice constants for observed crystal struc-
tures. We have used the LMTO band method to calculate
the electronic energy band structures with the von Barth-
Hedin form of the exchange-correlation potential [21] and
80 and 160 k-points for the NaCl and NiAs structure,
respectively, for tetrahedron integration [22] in the
irreducible Brillouin zone.

3.1. U and J for transition metal oxides

Metal oxides have the type II antiferromagnetic spin
arrangements in the cubic NaCl structure [4]. Table 1
shows calculated results for U, J, magnetic moments, and
energy gaps for the transition metal oxides, which are
compared with previously reported results. Anisimov et
al. [4] calculated U and J wvalues, using a rather
sophisticated restricted density functional calculation.
Pickett et al. [11] calculated U by using the differential
definition of U. The present procedure gives U values that
are a bit larger than previous calculations except for
MnO. In the case of MnO, the U value is in-between the

above two calculations [4, 11]. The increasing trend in U
from MnO to NiO is consistent with other calculations. In
transition metal oxides, the J values are nearly constant
around 0.9 eV. We have obtained a smaller energy gap for
MnO which seems to be due to the smaller value of U.

We have also calculated U and J values of Fe;O, only
for the sake of demonstration assuming the ferromagnetic
phase, whereas it has ‘a ferrimagnetic spin arrangement in
nature. The metallic electronic structure of our result can
be ascribed to wrong magnetic configuration. A correct
magnetic structure gives rise to a semiconducting
electronic structure [23, 24]. Fe;O, has two types of Fe
atoms in the spinel structure, one in a tetrahedral
environment and the other in an octahedral environment.
The LDA calculation yields that Fe at the octahedral site
has more d-electrons (6.00 vs. 5.86) and a smaller
magnetic moment (4.17 up vs. 437 up) than Fe at the
tetrahedral site. We have obtained a larger U value at the
octahedral site (8.3 eV) than at the tetrahedral site (7.7
eV), which is consistent with the tendency that an atom
with more d-electrons has a larger U value [4, 10, 11, 25].
It is interesting that the U value at the octahedral site is
similar to that of FeO which consists of only octahedral
sites. Magnetic moments from the LDA+U calculation
are 4.23 up and 4.36 gy for the octahedral and the
tetrahedral sites, respectively. Table 1 indicates that the
SAM method gives reasonable values for U and J, and
shows a consistent trend in that an atom with more d-
electrons has a larger U value.

3.2. U and J for MnB"!

We have applied the SAM method to MnB"' (B! =
S,Se,Te). MnB"! are interesting since they are usual band
insulators although the correlation effect between d-
electrons is large [26]. LDA calculation gives a metallic
state for antiferromagnetic MnTe in the NiAs structure
[27, 28], different from the observed semiconducting
state. Both MnS and MnSe have type II antiferromagnetic
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Table 2. Calculated Coulomb interaction parameter (U), Hund coupling constant (J), energy gap (E,), and magnetic moment (M).
LDA, LDA+U, and Exp. represent the results of LDA calculation, LDA+U calculation, and experiment, respectively. Energies are
in eV.

U | E, M (1)
LDA LDA+U Exp. LDA LDA+U Exp.
MnS 6.0 0.87 0.85 1.24 2.7%,2.8 429 4.59 4.54¢
MnSe 6.1 0.86 0.46 0.67 2.0°,2.5° 434 4.64 >4.454
MnTe 6.2 0.86 0.07 0.40 0.9% 1.3 432 4.66 4.7

?H. Sato, T. Mihara, A. Furuda, M. Tamura, K. Mimura, N. Happo, M. Taniguchi, and Y. Ueda, Phys. Rev. B. 56, 7222 (1997). PRef. 26. Ref. 29. 9S.
J. Pickart, R. Nathans, and G. Shirane, Phys. Rev. 121, 707 (1961). °Ref. 31.

spin arrangements in the cubic NaCl structure [29, 30],
whereas MnTe has an antiferromagnetic spin arrangement
in the hexagonal NiAs structure [31] in which Mn and Te
are located at 2a and 2c¢ sites, respectively. We have
introduced empty spheres at the 2d sites to account for the
non-isotropic interstitial region around Te. The Mn-d
electrons in these materials form localized magnetic
moments in the high spin state.

In Table 2, the U and J values for MnB"" are presented.
The U values are nearly constant but slightly increasing
as the anionic atomic number increases. A core x-ray
photoemission study on Ni dihalides shows that the on-
site Coulomb correlation U is roughly constant but that
the charge transfer energy, Acr, changes a lot as the halide
anion changes [32]. As can be seen in Table 2, LDA+U
energy gaps are not improved much from LDA. This is
because MnB"! has the crossroads character between
charge transfer and band insulators. Since the energy gap
is formed between the chalcogen-p and the Mn-s bands
[17], LDA+U correction only at Mn 3d-orbital does not
help much in enlarging the energy gap.

Table 2 also lists Mn magnetic moments. The resulting
magnetic moments from the LDA+U are enhanced as
compared to the LDA values, which is in good agreement
with experiment. In the case of MnSe, the calculated
magnetic moment shows a relatively large discrepancy
from experiment because the experimental value is taken
from MnSe doped with Li (0.05%). Since the size of
magnetic moment varies greatly by doping in MnSe,
increasing with reduced doping concentration, the actual
magnetic moment may be larger than the values given,
4.45 pp, in Table 2.

4. Conclusion

We have devised a simple method, i.e., the solid atom
method (SAM), to calculate the Coulomb interaction
parameter, U, and the Hund exchange coupling constant,
J, for use in the LDA+U calculation. The parameters are

calculated self-consistently. SAM is tested for transition
metal oxides and MnBY! (BY! = S Se,Te). U values have
similar magnitude to existing values in the literature and
show increasing trend with atomic number consistent to
other calculations although they are obtained by a much
simpler method. LDA+U calculation does not improve
much the electronic structure of MnBY' due to its
crossroads character between charge transfer and band
insulators.

Acknowledgements

This work was supported by the Korea Research
Foundation Grant (KRF-2004-042-A00026), in which
main calculations were performed by using the super-
computing resources of the Korea Institute of Science and
Technology Information (KISTI).

References

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964).

[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[3}] K. Terakura, T. Oguch, A. R. Williams, and J. Kbler,
Phys. Rev. B 30, 4734 (1984).

[4] V. L. Anisimov, J. Zaanen, and O. K. Andersen, Phys.
Rev. B 44, 943 (1991).

[5] V.1 Anisimov, F. Aryasetiawan, and A. 1. Lichtenstein, J.
Phys.: Condens. Matter 9, 767 (1997).

[6] F. Aryasetiawan, Phys. Rev. B 46, 13051 (1992).

[7} V. 1. Anisimov, A. 1. Poteryaev, M. A. Korotin, A. O.
Anokhin, and G. Kotlier, J. Phys.: Condens. Matter 9,
7359 (1997).

[8] B. N. Cox, M. A. Coulthard, and P. Lloyd, J. Phys. F:
Metal Phys. 4, 807 (1974).

[9] M. R. Norman and A. J. Freeman, Phys. Rev. B 33, 8896
(1986).

[10] 1. V. Solovyev and M. Imada, Phys. Rev. B 71, 045103
(20053).
[11] E. Pickett, S. C. Erwin, and E. C. Ethridge, Phys. Rev. B



Journal of Magnetics, Vol. 10, No. 2, June 2005

58, 1201 (1998).

[12] V. 1. Anisimov and O. Gunnarsson, Phys. Rev. B 43,
7570 (1991).

[13] I. F. Janak, Phys. Rev. B 18, 7165 (1978).

[14] J. C. Slater, Quantum theory of Molecules and Solids
(McGraw-Hill, New York, 1974).

[15] J.-S. Kang, J. H. Kim, S. W. Han, K. H. Kim, E. J. Choi,
A. Sekiyama, S. Kasai, S. Suga, and T. Kimura, J. of
Magnetcis 8(4), 142 (2003).

[16] S. K. Kwon and B. I. Min, Phys. Rev. Lett. 84, 3970
(2000).

[17] S.J. Youn, B. I. Min, and A. J. Freeman, Phys. Stat. Sol.
(b) 241, 1411 (2004).

[18] O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

[19] Y.-R. Jang and B. I. Min, J. of Magnetcis 3(1), 1 (1998).

[20] A. L Liechtenstein, V. 1. Anisimov, and J. Zaanen, Phys.
Rev. B 52, R5467 (1995).

[21] U. von Barth and L. Hedin, J. Phys. C: Solid State Phys.
5, 1629 (1972).

~-75 =

[22] J. Rath and A. J. Freeman, Phys. Rev.' B 11, 2109 (1975).

[23] V. 1. Anisimov, 1. S. Elfimov, N. Hamada, and K. Tera-
kura, Phys. Rev. B 54, 4387 (1996).

[24] V. N. Antonov, B. N. Harmon, V. P. Antropov, A. Y. Per-"
lov, and A. N. Yaresko, Phys. Rev. B 64, 134410 (2001).

[25] Note that Anisimov et al. (Ref. [20]) used the same U for
both types of Fe in their calculation on Fe;0,.

[26] J. W. Allen, G. Lucovsky, and J. C. Mikkelsen Jr, Solid
State Commun 24, 367 (1977).

[27] S.-H. Wei and A. Zunger, Phys. Rev. B 35, 2340 (1987).

[28] M. Podgrny, Z. Phys. B Cond. Matt. 69, 501 (1988).

[29] B. E. F. Fender, A. J. Jacobson, and F. A. Wedgwood, J.
Chem. Phys. 48, 990 (1968).

[30] T. Ito, K. Ito, and M. Oka, Japan. J. Appl. Phys. 17, 371
(1978).

[31] N. Kunitomi, Y. Hamaguchi, and S. Anzai, J. Phys.
(Paris), 25, 568 (1964).

{32] J. Zaanen, C. Westra, and G. A. Sawatzky, Phys. Rev. 33,
8060 (1986).



