Analysis of Electromagnetic Wave Scattering from a Sea Surface Using a Monte-Carlo FDTD Technique

  • Choi Dong-Muk (Research Institute of Industry Technology, Korea Maritime University) ;
  • Kim Che-Young (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim Dong-Il (Department of Radio Science & Engineering, Korea Maritime University) ;
  • Jeon Joong-Sung (Research Institute of Industry Technology, Korea Maritime University)
  • Published : 2005.06.01

Abstract

This paper presents a Monte-Carlo FDTD technique to determine the scattered field from a perfectly conducting surface like a sea surface, from which the useful information on the incoherent pattern tendency could be observed. A one-dimensional sea surface used to analysis scattering was generated using the Pierson-Moskowitz model. In order to verify the numerical results by this technique, these results are compared with those of the small perturbation method, which show a good match between them. To investigate the incoherent pattern tendency involved, the dependence of the back scattering coefficients on the different wind speed(U) is discussed for the back scattering case.

Keywords

References

  1. J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surface, IOP Publishing, 1991
  2. E. I. Thorsos, 'Acoustic scattering from a 'PiersonMoskowitz' sea surface', J. Acoust. Soc. Am., vol. 88, no. 1, pp. 335-349, Jul. 1990 https://doi.org/10.1121/1.399909
  3. J. V. Toporkov, R. T. Marchand, and G. S. Brown, 'On the discretization of the integral equation describing scattering by rough conducting surfaces', IEEE Trans. Antennas and Propagat., vol. 46, no. 1, pp. 150-161, Jan. 1998 https://doi.org/10.1109/8.655462
  4. E. I. Thorsos, 'The validity of the Kirchhoff approximation for the rough surface scattering a Gaussian roughness spectrum', J. Acoust. Soc. Am., vol. 83, no. 1, pp. 78-92, Jan. 1989
  5. E. I. Thorsos, D. R. Jackson, 'The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum', J. Acoust. Soc. Am., vol. 86, no. 1, pp. 261-277, Jul. 1989 https://doi.org/10.1121/1.398342
  6. Allen Tatlove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, U.S.A., 1995
  7. F. D Hastings, J. B. Schneider, and S. L. Broschat, 'A Monte-Carlo FDTD technique for rough surface scattering', IEEE Trans. Antennas and Propagat., vol. 43, no. 11, pp. 1183-1191, Nov. 1995
  8. R. F. Harrington, Field Computation by Moment Methods, New York: IEEE Press, 1993
  9. G. Franceschetti, A. Iodice, and D. Riccio, 'Scattering from dielectric random fractal surfaces via method of moments', IEEE Trans. Geosci. Remote Sensing, vol. 38, no. 4, pp. 1644-1654, Jul. 2000 https://doi.org/10.1109/36.851964
  10. T. Dogaru, L. Carin. 'Time-Domain sensing of targets buried under a rough air-ground interface', IEEE Trans. Antennas and Propagat., vol. 46, no. 3, pp. 360-372, Mar. 1998 https://doi.org/10.1109/8.662655
  11. A. W. Morgenthaler, C. M. Rappaport. 'Scattering from lossy dielectric objects buried beneath randomly rough ground: Validating the semi-analytic mode matching algorithm with 2-D FDTD', IEEE Trans. Geosci. Remote Sensing, vol. 39, no. 11, pp. 2421-2428, Nov. 2001 https://doi.org/10.1109/36.964978
  12. N. Lin, et al., 'Wave scattering from fractal surface', J. of Modern Opt. 42, pp. 225-241, 1995 https://doi.org/10.1080/09500349514550181
  13. R. M. Axline, A. K. Fung, 'Numerical computation of scattering from a perfectly conducting random surface', IEEE Trans. Antennas and Propagat., AP-26, pp. 482-488, 1978
  14. K. Demarest, Z. Huang, and R. Plumb, 'An FDTD near-to far-zone transformation for scatterers buried in stratified grounds', IEEE Trans. Antennas and Propagat., vol. 44, no. 8, pp. 1150-1157, Aug. 1996 https://doi.org/10.1109/8.511824