DOI QR코드

DOI QR Code

Photon Extraction Efficiency in InGaN Light-emitting Diodes Depending on Chip Structures and Chip-mount Schemes

InGaN LED에서 칩 구조 및 칩마운트 구조에 따른 광추출효율에 관한 연구

  • Lee, Song-Jae (Electronics Engineering Department, Chungnam National University)
  • 이성재 (충남대학교 전기정보통신공학부 전자공학과)
  • Published : 2005.06.01

Abstract

The performance of the InGaN LED's in terms of the photon extraction efficiency has been analyzed by the Monte Carlo photon simulation method. Simulation results show that the sidewall slanting scheme, which works well for the AlInGaP or InGaN/SiC LED, plays a very minimal role in InGaN/sapphire LED's. In contrast to InGaN/SiC LED's, the lower refractive index sapphire substrate restricts the generated photons to enter the substrate, minimizing the chances for the photons to be deflected by the slanted sidewalls of the epitaxial semiconductor layers that are usually very thin. The limited photon transmission to the sapphire substrate also degrades the. photon extraction efficiency especially in the epitaxial-side down mount. One approach to exploit the photon extraction potential of the epitaxial-side down mount may be to texture the substrate-epitaxy interface. In this case, randomized photon deflection off the textured interface directly increases the number of the photons entering the sapphire substrate, from which they easily couple out of the chip and thereby improving the photon extraction efficiency drastically.

InGaN LED에서 칩 구조 및 칩마운트 구조에 따른 광추출효율의 변화를 Monte Calo 기법을 이용하여 해석하였다. Simulation을 통해 얻은 중요한 결론의 하나는, InGaAlP 또는 InGaN/SiC LED의 경우에서는 달리, InGaN/sapphire LED의 경우 칩의 측 벽면 기울임 기법의 광추출효율 개선효과가 상대적으로 미미하다는 점이다. InGaN/SiC LED의 경우와는 달리, 기판으로 사용되는 sapphire의 굴절률이 상대적으로 작아서 생성된 광자들이 기판으로 넘어가는데 전반사장벽을 만나게 되어, 많은 광자들이 기판으로 넘어가지 못하고 두께가 매우 얇은 반도체 결정층에 갇히는 현상 때문이다. 동일한 현상은 epi-down 구조의 칩 마운트에서 광추출효율이 크게 개선되지 못하는 원인으로도 작용하게 된다. 광추출효율 관점에서의 epi-down 구조의 InGaN/sapphire LED가 갖고 있는 잠재력을 살리기 위한 방법의 하나는 기판-에피택시 계면을 texturing 하는 것이라고 할 수 있는데, 이 경우 생성된 광자들이 다량기판으로 넘어갈 수 있게 되어 광추출효율이 현저하게 개선된다.

Keywords

References

  1. T. Mukai, M. Yamada, and S. Nakamura, 'InGaN-based uv /blue/green/amber/red LEDs,' in Light-Emitting Diodes: Research, Manufacturing, and Applications III, Proc. SPIE, vol. 3621, pp. 2-14, Jan. 1999 https://doi.org/10.1117/12.344464
  2. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Grnitter, and Scherer, '30 % external quantum efficiency from surface textured, thin-film light-emitting diodes,' Appl. Phys. Lett., vol. 63, no. 16, pp. 2174-2176, Oct. 1993 https://doi.org/10.1063/1.110575
  3. R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. MeinIschmidt, S. Schoberth, P. Kissel, G. Borghs, G. Dohler, and P. Heremans, '40 % efficient thin surface-textured light-emitting diodes by optimization of natural lithography,' IEEE. Trans. on Elect. Dev., vol. 47, no. 7, pp. 1492-1497, July 2000 https://doi.org/10.1109/16.848298
  4. R. Windisch, C. Rooman, S. Meinlschmidt, P. Kissel, D. Zipperer, G. Dohler, B. Dutta, M. Muijk, G. Borghs, and P. Herernans, 'Impact of textured transmission on high-efficiency surface light-emitting diodes,' Appl. Phys. Lett., vol. 79, no. 15, pp. 2315-2317, Oct. 2001 https://doi.org/10.1063/1.1397758
  5. S. J. Lee and S. W. Song, 'Efficiency improvement in light emitting diodes based on geometrically deformed chips,' in Light-Emitting Diodes: Research, Manufacturing, and Applications III, Proc. SPIE, vol. 3621, pp. 2-14, Jan. 1999 https://doi.org/10.1117/12.344464
  6. M. R. Krames, M. Ochiai-Holcom, G. E. Hoffler, C. CarterE. I. Chen, I.H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, 'High-power truncated ($Al_xGa_1)_{0.5}In_{0.5}$ P/GaP light-emitting diodes exhibiting>50% external quantum efficiency,' Appl. Phys. Lett., vol. 75, no. 16, pp. 2365-2367, Oct. 1999 https://doi.org/10.1063/1.125016
  7. S. J. Lee, 'Analysis of light-emitting diodes by Monte Carlo photon simulation,' Appl. Opt., vol. 40, no. 9, pp. 1427-1437, Mar. 2001 https://doi.org/10.1364/AO.40.001427
  8. S. Nakamura and G. Fasol, The blue laser diode, Springer, Berlin, 1997
  9. S. J. Lee, 'Electrode design for InGaN/sapphire lightemitting diodes based on multiple thin ohmic metal patches,' in Fourth International Conference on Solid State Lighting, Proc. SPIE, vol. 5530, pp. 338-346, Aug. 2004
  10. K. H. Hunag, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, and M. G. Craford, 'Two-fold efficiency improvement in high performance AlGalnP light-emitting diodes in the 555-620 run spectral region using a thick GaP window layer,' Appl. Phys. Lett., vol. 61, no. 9, pp. 1045-1047, Aug. 1192 https://doi.org/10.1063/1.107711
  11. S. J. Lee, 'Analysis of InGaN high-brightness lightemitting diodes,' Jpn, J. Appl. Phys., vol. 37, no. 11, pp. 5990-5993, Nov. 1998 https://doi.org/10.1143/JJAP.37.5990

Cited by

  1. Basic Design Guidelines for LED Lamp Packages vol.22, pp.3, 2011, https://doi.org/10.3807/KJOP.2011.22.3.141