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Central limit theorems for fuzzy random sets
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Abstract

The present paper establishes the improved version of central limit theorem for sums of level-continuous fuzzy
set-valued random variables as a generalization of central limit theorem for sums of independent and identically

distributed set-valued random variables.
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1. Introduction

The concept of a fuzzy random set as a natural gen—
eralization of a set-valued random variable was in-
troduced by Puri and Ralescu [15] in order to represent
the relationships between the outcomes of random ex-
periment and inexact data due to the human subjectivity.
There they [15] used a term "fuzzy random variable” in-
stead of "fuzzy random set”’. Here we distinguish be-
tween a fuzzy random variable and a fuzzy random set;
a fuzzy random variable is a random element taking val-
ued in the space of fuzzy numbers, where as a fuzzy
random set is a random element taking valued in the
space of more general fuzzy sets without fuzzy
convexity.

Statistical analysis for fuzzy probability models led to
the need for central limit theorems for fuzzy random
sets. As the first result related to this problem, Klement
et al. [12] provided a good insight about the central limit
theorem for fuzzy random variables assuming
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Lipschitz-condition. Wu [18)] studied a completely differ—
ent point of view from that by introducing the concept
and strong convergence in fuzzy distribution for fuzzy
random variables. Kriaschmer [13] established central
limit theorem for fuzzy random variables by using dif-
ferent metric from that of Klement et al. [12].

In this paper, we formulate the improved version of
the above works for fuzzy random sets. It is expected
that our results have considerable potential usefulness to
statistical analysis for imprecise data.

2. Preliminaries

Let % (R") be the family of all non-empty compact
subsets of R?. Then & (R?)
Hausdorff metric % defined by

(A, B) = max {sup ,c 4inf ,ezla— 4,

is metrizable by the

SUD pepinf ,egla— 8},
A norm of Ae % (R? is defined by

AL =8(A,0)=sup alal.

It is well known that the metric space (% (R?),h) is
complete and separable (See Debreu [3]).
The addition and scalar multiplication in % (R?) are
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defined as usual;
ADB={a+b| a=A,b=B}, 1A= {Aa| acA}.

We denote by K(R”) the family of convex
Ae g (R”). A support function A=K(R?) is defined by

$4 25771 = R, s4(x) = sup e, 0,

where S?~! denotes the unit sphere’ of R’ and
< , > is the usual scalar product.

Then it 1s well-known that Sa is continuous, ie.,, Sa
eC(5?7"Y) and that

Sagp = SatSp Sia = Asy for A=0
and
h(A,B) = | s4—sp |

= SUP, o gr-1 [54(x) —sp(z)|:

Let F(R”) denote the space the family of all fuzzy
sets % :R? — [0,1] wih the following properties;

(1) % is normal, ie. there exists x=R’ such that
wx) = 1;

(2) % is upper—semicontinuous;

3) supp w = cl {xeR”: Wx) > 0} is
where ¢/ denotes the closure.

compact,

For a fuzzy set % in R?, we define the a- level set

of % by

_ {{x: wWx) = af, 0<a<l,

L. supp u, a=0.

a

Then it follows that % € F(R?) if and only if
L,z € % (R?) for each « = [0,1].

Also, if we denote

L, % =c¢l {x=R? : (x> a},
then by Lemma 2.2 of Joo and Kim [9],

limh(Lgit, L %) = 0

A fuzzy set % is called level-continuous if L % =
L% for all a € [0,1] and the family of all lev-

el-continuous %= F (R?) will be denoted by F (R?).
The linear structure on F(R?) are defined as usual;

(7D D) (%)= sup ;4 . ,min (%), ¥ 2)),
~ o w(x/A), i A0,
("”)(x)—{o(x), it 1=0,
for %, 7 eF(R?) and AR, where 0=1 ¢ denotes the

indicator function of {0}.
Then it is well-known that for each

Lz ® =L, ® L

e=[0,1],
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L (A= AL%.
Recall that a fuzzy subset % of K? is said to be con-
vex if for x,yeR? and A=[0,1],
2(Ax+ (1—A)y) = min(7%(x), % v)) .
The convex hull of % is defined by

and

co() = inf{P| 7 is convex and 7=%).

Then for each e<[0,1],
L,co() = co(L,u) .

(For details, see Lowen [14]).

We denote by F(R?) (resp. Fc(R")) the family of all
fuzzy convex weF(R?) (resp. #EF (R")) and an ele-
ment of F(R?) is called'a fuzzy number. Then it follows
that % € F(R?) if and only if L.,# € K(R?) for each
a = [0,1].

Now, we can define the uniform metric 4w on ¥ (R?)
by

do(%, ) = SUD pege; #M(L,%, L,7).

Also, the norm of we F(R?) is defined as

1%l =du(m 0D =sup,_,. ||

€ Lyi

Then it is well-known that (F (R?) dw) is complete,
but is not separable. (See Diamond and Kloeden [4]).
However, (F ¢(R”) d) is complete and separable.

A support function of a fuzzy number wueF(R?) is
defined by

S :[0,1}x8?7 — R, s;(a,3) = sLal-‘(:z:)
=sup o <ZTY>.
Then it is well-known that
Sigo— St Sy S = As; for 420,
and
de (4, v) = | s:— s |

= SUD(a,z) € J0,1]x 57~ | s, (yz)— S, (o, z)|.

Also, $;eC([0,1]xS*"") if and only if #eF(R?)
(For details, see Roman-Flores and Rojas-Medar [16]).

3. Main Resuits

Throughout this paper. let (82,8,P) be a
probability space. A set-valued function X : Q —
(% (R?),h) is called a random set if it is measurable. A
random set X is called integrably bounded if
E| X[ < o. The expectation of integrably bounded
random set X is defined by

E(X)={E@) | éeL(2,R") and &w)eX(w) a.s.},



where L(2,R?) denotes the class of all R?-valued

random variables & such that E| &} (oo,

The central limit theorem for random sets was first
given by Cressie [2] in a particular case. The general
central limit theorem for random sets appeared in Weil
{17], and independently in Gine et al. (5].

Theorem 3.1. Let {X,} be independent and identically
distributed random sets. If E1X,1% < % then

Vo L@ X, o EX)) = 121

where Z is a centered Gaussian random element in

c(s~h = denotes the
distribution.

and convergence in

A fuzzy valued function X: Q — F(R" is called a
fuzzy random set if for each a=[0,1], L,X is a random
set. This definition was introduced by Puri and Ralescu
[15] as a natural generalization of a random set. If X is
F(R?)—valued, then it is called a fuzzy random variable,
If X is a random element of the metric space (F (R?)
d.), then it is a fuzzy random set. But the converse is
not true (See Kim [11]). However, if X is a F c(R?)
-valued, then X “is a fuzzy random set if and only if it

is a random element of the metric space (F ¢(R”) ds)
(See Joo et al. [10D.

A fuzzy random set X is called integrably bounded if
E| X| < o. The expectation of integrably bounded
fuzzy random set Xisa fuzzy set defined by

E(X)(z) =sup{a €[0,1] : 2 € E(L,X)}.

It is well-known that if X,Y are integrably bounded
fuzzy random sets, then

(1) E(X) € #(R?, and if X is F(R") -valued,
then E(X) € F (R,

@) LE(X)=E(L,X) for all a=[0,1].

3 EXeY)=EX)0E(Y).

(4) EQAX) = AE(X).

G 1t X is F(R?) (resp. F(R"))-valued, then
E(X) € F(R?) (resp. Fc(R").

The purpose of this paper is to generalize Theorem 3.1

to the case of fuzzy random sets. Klement et al. [12}
provided a generalization of Theorem 3.1 for fuzzy

random variables taking values in the space F 1(R?) of
fuzzy sets weF(R?) such that @ = L,u is Lipschitz,
i.e., there exists a constant M>0Q such that

WLy, La) < Ml a—B1 for all e, p=l0,1].

HX e Hetol e saF8HEEl

Kraschmer [13] formulated central limit theorems for
fuzzy random variables in a more general setting by
using different metric

1
pr(u; 'U) = {// |8Lau_3Lau|rd/1da} 3
o Jgrt

N

r>1,

where ¢ denotes the unit Lebesgue measure on
st
Here we give an improvement of the result of

Klement et al. [12] by considering F (R*)-valued fuzzy
random sets.

Theorem 32. Let {X .} be independent and identically

distributed F(R?)-valued fuzzy random variables with
E||X||?<c. If there exists a non-negative random
variable £ with E(£) < o such that for all w € £,

WLy Xy (w), LyXy(w)) < E(w) | a—5],

then there exists a centered Gaussian random element
Zin C([0,1]x5*" 1) such that

D S5, T M8k,
g= 1 — = Z,
v

where = denotes the convergence in distribution.

Proof: By hypothesis, {8 % } is independent and identi-
cally distributed € ([0,1]x S?7!)-valued random varia-
bles and £ ||SX||2=E| | X 112<oo. In order to apply the

CLT in C([0,1]x 8§77') (Corollary 7.17 of Arujo and
Gine {1] or Theorem 1 of Jain and Marcus (8]), we must
check that two conditions is satisfied. First, we have to
check a Lipschitz condition for {83 — Esz }. In deed,

| (55, (@,2) = Bsy (o)) — (55 (5,9) = Bsg (6,9))]

< '(sLﬂl?l(x)_sL‘,).(l(y)l + |SLGE)?1(x)_SL,EX](y)|

(A

(s, (8) =52 (@)1 + | (5,5 (2) =5, 5 (9)]
+ IsLQEXl(x)—stE}-(](z)I + lsLtE)-(](x)—-SLngl(y)l
< Ela—B1+Hsgll Hz—yll+ E(€)la—8]

s 11 s apll o=yl
< max (E+ E(€), gl + 1 s ps11)

(la=B1 +Il z—yl1)
< max (£+ E(€), UXIl + || EX)II)

(le=Bl +11 z—yl]).

d((o,2),(By)) =la=Bl + |lz—yllis a con-

tinuous metric with respect to the usual metric on
[0,1]x 877! and ’

Here,

M= max(§£+ E(&), 1 X1+l BX) 1)
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is a non-negative random variable with E(M?) < oo
and the above inequality implies that

| (55(1 (a,7)— Esy (o, ) — (55:1 (By) — Esy B y) |
< Md((e,2),(8,y))
for all (& 2), (B,y) € [0,1]x 87",

Thus,

satisfied.
Secondly, we have to check metric entropy condition

a Lipschitz condition for {sz — Esz } is

1
/Hlﬂ(e)de < oo,
0

where H is the metric entropy of [0,1]x S*~! defined by
H(e)=1logN(e) with N(e) the minimal number of balls
of radius € >0 which cover [0,1]x S?~!. But this is
identical with the work of Klement et al. [12]. In deed,
N(e) < C,e?

with Cp a constant depending only on dimension p.
Thus, the metric entropy condition is satisfied. Q.E.D.

Corollary 3.3. Let {X ,

distributed F o{R”)-valued fuzzy random sets with
E| X,|?< oo, If there exists a non-negative random
variable ¢ with E (&) < o such that for all w € £,

)|C¥-—,6|,

} be independent and identically

h(L X, (w), L Xy (w) ) < E(w

then there exists a centered Gaussian random element Z
in C([0,11xS?™ Y such that

leco(xi) —n
1y =

scu(E‘X’,)

NG = Z,

—_ 1 " ~ = -
2) Vnd, ('E @i, Xy co(EXy)) = | Z]
Proof. (1): By hypothesis, {co(X,)} is independent and

identically distributed F{(R?)-valued fuzzy random sets
and

Ell coX) 1I’=E |1 X |1*< 0.,

Also, by convexity inequality, we have

R{L, coX, (w), Lﬂcof(1 (w)) < R(L.X, (w), Lﬂ)?l(w) )
<&(w)la—4pl.

Therefore (1) follows immediately from Theorem 3.2.
(2): Since the norm | - | on C([0,1]x §?7!) is con-

tinuous and
| E co (k) ~ ™eo(R,)
77 |
= \/n s eB Lco(X,) T Seo(R,) H
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= Vi da (£ &y co( X, co(EXy)),
we have
Vi d, (2oL, (), co(EX,)) T = 114l

Now, by Shapley-Folkman inequality for fuzzy sets,
we obtain

| Vida(
Vide (=
< /nd, (

:_d (691 1X17

@?:15(1': CO(E)?l)) -
Bi-1c0 (Xi)r CO(EXI N

@1 lXu 691 ICO(X ))

Bi=1co(X.)

\/‘ maXeicn |1 %11
n

Since {I1 X;I1} is iid. real valued random variables
with El1X;||* <o | the CLT for real-valued random

variables implies that ma% ;<. |1 X[l = 0.
Therefore, we have

Vi do (=@, X, co(BX,)) = 1121. QED.

4. one—dimensional case

If we consider one-dimensional fuzzy random varia-
bles as a special case, then we can obtain further more
interesting results. First we recall that « € F(R) is
completely determined by the end points of the intervals
Lyu= [ul, ] by the following theorem (see Goetschel
and Voxman [6]).

"and u" as

Theorem 4.1. For v € F(R), we consider u
functions of o € [0,1] . Then
(1) ' is a bounded increasing function on [0,1].
(2) w" is a bounded decreasing function on [0, 1].
3) v < u.
(4) ' and w" are left continuous on {0,1] and right
continuous at 0.
(5) If 4 and v satisfy above (1)-(4), then there exists

a unique v € F(R) such that

L= [}, v}] for all a < [0,1].

By the above Theorem, we can identify a fuzzy num-
ber w € F(R) with the parameterized representation

{(us #J) 10 < @ < 1}

?

where »' and wu" satisfy the conditions (1)-(4) of

Theorem 4.1. Also, it follows that « € Fo(R) if and



only if ' and " are continuous on [0, 1].
If v,v€ F(R) and
u={(us w)| 0 < a<1}
v={(t,v})| 0 < a < 1)},
then
u®v={(ta+ thy ug+05) [0 < o < 1)
Au={QAu, )| 0<a<1},A=0.
And then,
dOO('&'a'&)ZWPOSaglmaX(lué—d,l,|u;—1,£’)

’

and
| ul| =mex(| 4], 1%])-

Furthermore, if X = {(Xas, X)|0<a<1} is a

F(R)-valued function,
statements are equivalent;

then the following three

1) X is a fuzzy random variable.
(2) For each a €[0,1), X! and X! are real-valued
random variables.
3 X' and X" are
variables.
In this case, B(X) = {(B(X),E(X])|0<a<1).
Thus, we can obtain the following results by applying
Theorem 3.2, Corollary 3.3 and the result of Hahn [7].

C[0,1]-valued random

Theorem 42. Let

Xo= {(Xha X0)1 0 < @ < 1)

sQ7

be independent and identically distributed F(R)
~valued fuzzy random variables with E | X{;|? < o and
E|X/ol* < . If there exists a non-negative random
variable £ with E(¢€) < o such that for all w € £,

max([Xll,a(w)—X{,ﬁ(w) I, IXlr,a(w)_Xlr,ﬁ (w)l)
<é(w)la—-81,

then there exists a centered Gaussian random element
Z=(Z, %) in C[0,1]xC10,1] such that the following
hold;

(1) for each « € [0,1],

n

Y X!, —nEX],

— = N©O,1)
guN/ 1
and
N x!, —nEX/,
=1 — = N(0,1) ,
ohv/n

where O (ll and Op are the standard deviation of Xi,

and X{, respectively.

> X{—nEX/
@ = 7 = Z
and
Zn:Xf—nEX{
- o
|| Y —nEX ||
3 —= 7 = 4|
and
|| 3% —nBX] ||
— = 14%].

(4) \/77’ doo (% @?:1 5(1'7 E(Xl))

|1 Y~ |
i= \/;; ,
13X~ |
i= \/%

= maz(

)
= 2| =([[ 411,11 411).
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