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Abstract

The problem of maximizing an OWA aggregation of a group of variables that are interrelated and constrained by a
collection of linear inequalities is considered by Yager[Fuzzy Sets and Systems, 81(1996) 89-101]. He obtained how
this problem can be modelled as a mixed integer linear programming problem. Recently, Carlsson et al. [Fuzzy Sets
and Systems, 139(2003) 543-546] obtained a simple algorithm for exact computation of optimal solutions to a
constrained OWA aggregation problem with a single constraint on the sum of all decision variables. In this note, we
introduce anew approach to the same problem as Carlsson et al. considered. Indeed, it is a direct consequence of a
known result of the linear programming problem.
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1. Introduction The Linear programming problem :@: Maximize the
objective function
An Ordered Weighted Averaging(OWA) is a mapping fxp,x,) = cx+ = +eox,
F:R">R that has an associated weighting vector
w=(w,,~,w,)" of having the properties subject to the condition that (%1, ', %,) be in
wit e tw,=1, 0<w,<1, i=1,, 7 and such that F={xeR% : x, ., x, satisfy a finite set of

n linear constraints }.
F(xl,---,xn) - lz:lw,-x i)

where X (5 is the ; th largest element of the bag Theorem [2, p241]. If the objective function is bounded
above on F+@ then there are optimal solutions to the
linear programming problem, at least one of which is an
extreme point of F. Using above theorem, we directly
prove the OWA aggregation problem (1).

{xq, 2}
The constrained OWA aggregation problem [3] can be
expressed as the following mathematical programming

problem:
max F(x,,,x,) subjects to {Ax<b, x>0}. Proof. Let H={k{ 1,,n}— { 1,-,n }, a bijective
where function }. Then we have

max{ w7 x (.,lx+ - +2x,€1, x>0}

= mMax ey Mmax { WXy = w4yt W
Recently, Carlsson et al. [1] obtained a simple algo- xpt et 2, <1, X2 2y 20}

rithm for solving the following (nonlinear) constrained

OWA aggregation problem

F (X, %)= WX ()= wixy+ o+ wx .

We note that
the set of extreme point of

max w'x (. {x )+t 2, <1, x 228 4,20}
subjects to {x,+ - +=x,, x,20} o)) ={xan=1, x4p=0, i*1}
_ 1 -0
We revisit this problem. U{x W)= X )= g X =0, 1#1,2} e
) 1
U{x S A h<n>=—n}U{x W)= " =X =0}
2. Result

For example,

We first see the following known result. the set of extreme point of

{x 1 +xtag+x,<1, x32x,2x,2x, =0}

_ 1ol gy dodl 1
={©.0.1,0,¢&.0,+.0.+.0.4. D,
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And by above theorem, we have that

max{ W T x 4%, 40s 2, <1, x 22 1 40,20

= max{wl, wl-zi-wZ,..., wH';‘—'—w"

Now, we define #&™{1,-,n}—{1,,n} where
W49 = tth largest element of the bag {wi, =, w,}.
Then, clearly, we have that W ' x ()< w "x ,.

Therefore, we have

max { wTx (,lx,+ - +x,<1, x>0}
max{ wlx x4+ +2x,<1, xh.mz---th.(,,zo}

{ w,tx, +w,,]
maxjw,, — g, .
n

I

It

s w1+

If the maximum value is (w,+-+w, }/m, an op-

timal solution to problem (1) will be X,-q)="'"

=% = 1/m with F(x3) = (w,+ - +w,)/m.

Example. We consider the following five-dimensional
constrained OWA aggregation problem with wj3=w

2w w2 wg=0,

max F (x|, %, 23, ¥4, %5) subject to
{x;++x < 1,2 = 0} 2

The set of all possible optimal value is considered as

Wit W, w1+w2+w3+w4+w5}

pef, Wit 5

and, the corresponding optimal solutions are, for example,

if max D= (w,+w,+w;)/3,

problem (2) will be
F(x ,J)=(w,+w,+w,)/3.

the optimal solution to
with

xs3=x,=x,=1/3
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