DOI QR코드

DOI QR Code

Adhesion of Kimchi Lactobacillus Strains to Caco-2 Cell Membrane and Sequestration of Aflatoxin B1

김치 유산균의 Caco-2 세포막 부착성 및 Aflatoxin B1 제거 효과

  • Lee, Jeongmin (Dept. of Food and Life Sciences, Nambu University)
  • 이정민 (남부대학교 식품생명과학과)
  • Published : 2005.06.01

Abstract

Five lactic acid bacteria (LAB) including 2 Lactobacillus strains isolated from Kimchi were evaluated to determine the binding ability to Caco-2 cells and $AFB_1$. LAB were divided into three different groups ; viable, heat-treated, and acid-treated cells. In the radioactive-labeling assay for bound cell counting, viable Lactobacillus Plantarum KCTC 3099 showed the higher adhesion to Caco-2 cells with the binding capacity of $39.2\%$, which was $149\%$ higher than Lactobacillus rhamnosus GG as a positive control. Leuconostoc mesenteroids KCTC 3100 showed the similar binding ability to L. rhamnosus GG. After 1 hour incubation at $37^{\circ}C$ with $AFB_1$, viable L. Planterum KTCC 3099 removed the toxin by $49.8\%$, which was similar level to L. rhamnosus GG. Both heat- and acid-treated groups showed high binding effect but acid-treated group was more effective for both Caco-2 cell binding and $AFB_1$ removal than the other. These results indicate that components of bacterial cell wall might be involved in tile binding to intestinal cells and toxins.

김치의 발효와 숙성 에 관여하는 2종의 유산균과 3종의 유제품으로부터 분리된 유산균을 Caco-2 세포 부착성과 $AFB_1$ 흡착능에 대해 비교 검토하여 보았다. 또한 유산균을 생균군, 열처리군, 강산처리군으로 나누어 유산균의 부착성 및 흡착력이 세포벽의 구조와 관련이 있다는 보고를 재확인하고자 하였다. L. plantarum KCTC 3099의 경우 Caco-2 세포 부착성이나 $AFB_1$ 흡착능이 높게 나타났으며 이것은 양성 대조군으로 사용된 L. rhamnosus GG와 유사한 수준을 나타내었다. 하지만 L. mesenteroides KCTC 3001은 Caco-2 부착성은 다소 높게 나타났으나 $AFB_1$ 흡착능은 낮게 나타났다. 이것은 Caco-2세포에 결합하는 부위와 $AFB_1$에 결합하는 부위가 일치하지는 않는다는 것을 암시하는 것으로 사료된다. 또한 유산균의 처리방법에 따라서도 다양한 차이를 보였는데 본 실험에서는 강산처리군의 경우 보다 효과적인 것으로 나타났으며 세포벽의 주된 구조인 peptidoglycan과 polysaccharides이 강산의 처리에 의해 결합이 파괴되면서 Caco2 세포 부착성이나 $AFB_1$ 흡착능의 상승에 영향을 미쳤으리라 여겨진다. 하지만 강산처리에 의한 세포벽의 변화는 비특이적으로 발생하기 때문에 동일한 형태로 모든 유산균에 적용 되기는 어려울 것이며 각 유산균종의 세포벽 구조와 특이 성분의 함량에 따라 다양하게 변화가 일어날 것으로 사료된다.

Keywords

References

  1. Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S. 1999. Probiotics mechanisms and established effects. Intern Dairy J 9: 43-52 https://doi.org/10.1016/S0958-6946(99)00043-6
  2. Tuomola EM, Salminen S. 1998. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Intern J Food Microbio 41: 45-51 https://doi.org/10.1016/S0168-1605(98)00033-6
  3. Rinkinen M, Westermarck E, Salminen S, Ouwehand A. 2003. Absence of host specificity for in vitro adhesion of probiotic lactic acid bacteria to intestinal mucus. Veterin Microbio 97: 55-61 https://doi.org/10.1016/S0378-1135(03)00183-4
  4. El-Nezami H, Kankaanpaa P, Salminen S, Ahokas J. 1998. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin $B_1$. Food Chem Toxicol 36: 321-326 https://doi.org/10.1016/S0278-6915(97)00160-9
  5. Park KY, Cheigh HS. 2004. Handbook of food and beverage fermentation technology. Marcel Dekker, New York. p 621-655
  6. Park KY.1995. The nutritional evaluation, and antimutagenic and anticancer effects of kimchi. J Korean Soc Food Nutr 24: 169-182
  7. El-Nezami H, Mykkanen H, Kankaanpaa P, Salminen S, Ahokas J. 2000. Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B, from the chicken duodenum. J Food Prot 63: 549-552 https://doi.org/10.4315/0362-028X-63.4.549
  8. Coconnier MH, Klaenhammer TR, Kerneis S. 1992. Protein-mediated adhesion of Lactobacillus acidophilus BG2F04 on human enterocyte and mucus-secreting cell lines in culture. Appl Environ Microbiol 58: 2034-2039
  9. Rojas M, Ascencio F, Conway PL. 2002. Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol 68: 2330-2336 https://doi.org/10.1128/AEM.68.5.2330-2336.2002
  10. Granato D, Perotti F, Masserey I. 1999. Cell surface-associated Iipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl Environ Microbiol 65: 1071-1077
  11. Sreekumar O, Hosono A. 1998. The heterocyclic amino binding receptors of Lactobacillus gasseri cells. Mutat Res 421: 65-72 https://doi.org/10.1016/S0027-5107(98)00155-9

Cited by

  1. Catabolic Enzyme Activities and Physiological Functionalities of Lactic Acid Bacteria Isolated from Korean Traditional Meju vol.39, pp.12, 2010, https://doi.org/10.3746/jkfn.2010.39.12.1854
  2. Invited review: Microbe-mediated aflatoxin decontamination of dairy products and feeds vol.100, pp.2, 2017, https://doi.org/10.3168/jds.2016-11264
  3. Probiotic properties of lactic acid bacteria isolated from Korean rice wine Makgeolli vol.24, pp.5, 2015, https://doi.org/10.1007/s10068-015-0229-2
  4. Health Benefits of Kimchi (Korean Fermented Vegetables) as a Probiotic Food vol.17, pp.1, 2014, https://doi.org/10.1089/jmf.2013.3083
  5. Characterization of Probiotic and Functional Properties of Lactobacillus curvatus ML17, a Mukeunji Starter vol.43, pp.7, 2014, https://doi.org/10.3746/jkfn.2014.43.7.1009
  6. A survey of research papers on the health benefits of kimchi and kimchi lactic acid bacteria vol.51, pp.1, 2018, https://doi.org/10.4163/jnh.2018.51.1.1