DOI QR코드

DOI QR Code

Biomolecular Strategies for Preparation of High Quality Surimi-Based Products

  • Nakamura Soichiro (Department of Bioscience and Technology, Faculty of Agricultural Sciences, Shinshu University) ;
  • Ogawa Masahiro (Department of Biochemistry and Food Science, Faculty of Agricultural, Kagawa University)
  • Published : 2005.06.01

Abstract

There exist two interesting phenomena in making seafood products from surimi. When salted surimi is kept at a constant low temperature $(4\~40^{\circ}C)$, its rheological properties change from sol to gel, which is called 'setting'. Seafood processors can exploit changes that occur during setting in preparation of surimibased products, because heating at high temperatures, after the pre-heating during the setting process, enhances the gel-strength of salted surimi. Contrarily, when salted surimi or low-temperature set gel is heated at moderate temperatures $(50\~70^{\circ}C)$, a deterioration of gel is observed. The phenomenon is termed 'modori'. In the modori temperature range, heat-stable cysteine proteinases such as cathepsin B, H, Land L-Iike hydrolyze the myosins responsible for gel-formation, resulting in gel weakening modori. This article reviews molecular events occurring during gel setting that improve the quality of surimi-based products, and inhibition of modori by applying proteinase inhibitors. Application of recombinant protein technology to surimi-based products is introduced and its prospects for practical use are discussed.

Keywords

References

  1. An H, Peters MY, Seymour TA. 1996. Roles of endogeneous enzymes in surimi gelation. Trends Food Sci Technol 7: 321-326 https://doi.org/10.1016/0924-2244(96)10035-2
  2. Samejima K, Ishioroshi M, Yasui T. 1981. Relative role of the head and tail portions of the molecule in heatinduced gelatin of myosin. J Food Sci 46: 1412-1418 https://doi.org/10.1111/j.1365-2621.1981.tb04187.x
  3. Watabe S, Hirayama Y, Nakaya M, Kakinuma M, Guo X-F, Kanoh S, Chaen S, Ooi T. 1998. Carp expresses fast skeletal myosin isoforms with altered motor functions and structural stabilities to compensate for changes in environmental temperature. J Them Biol 22: 375-390
  4. Ojima T, Kawashima N, Inoue A, Amauchi A, Togashi M, Watabe S, Nishita K. 1998. Determination of primary structure of heavy meromyosin region of walleye pollack myosin heavy chain by cDNA cloning. Fish Sci 64: 812-819 https://doi.org/10.2331/fishsci.64.812
  5. Kawabata R, Kanzawa N, Ogawa M, Tsuchiya T. 2000. Determination of primary structure of amberjack myosin heavy chain and its relationship with structural stability of various fish myosin rods. Fish Physiol Biochem 23: 283-294 https://doi.org/10.1023/A:1011176105285
  6. Ogawa M, Tarmya T, Tuschiya T. 1994. Structural changes of carp yosin during heating. Fish Sci 60: 723-727 https://doi.org/10.2331/fishsci.60.723
  7. Johnston IA, Goldspink G. 1975. Thermodynamic activation parameters of fish myofibrillar ATPase enzyme and evolutionary adaptations to temperature. Nature 257: 620-622 https://doi.org/10.1038/257620a0
  8. Hashimoto A, Kobayashi A, Arai K. 1982. Thermostability of fish myofibrillar Ca-ATPase and adaptation to environmental temperature. Nippon Suisan Gakkaishi 48: 671-684 https://doi.org/10.2331/suisan.48.671
  9. Ogawa M, Tamiya T, Tsuchiya T. 1996. $\alpha$-Helical structure of fish actomyosin changes during storage. J Agric Food Chem 44: 2944-2925
  10. Rodgers ME, Karr T, Biedermann K, Ueno H, Harrington WF. 1987. Thermal stability of myosin rod from various species. Biochem 26: 8703-8708 https://doi.org/10.1021/bi00400a032
  11. Kakinuma M, Nakaya M, Hatanaka A, Hirayama Y, Watabe S, Maeda K, Ooi T, Suzuki S. 1998. Thermal unfolding of three acclimation temperature-associated isoforms of carp light meromyosin expressed by recombinant DNAs. Biochem 37: 6606-6613 https://doi.org/10.1021/bi972344g
  12. Shimizu Y, Machida R, Takenami S. 1981. Species variations in the gel-forming characteristics of fish meat paste. Nippon Suisan Gakkaishi 47: 95-104 https://doi.org/10.2331/suisan.47.95
  13. Niwa E, Suzuki R, Hamada I. 1981. Fluorometry of the setting of fish flesh sol-supplement. Nippon Suisan Gakkaishi 47: 1389
  14. Itoh Y, Yoshinaka R, Ikeda S. 1979. Effects of sulfhydryl reagents on the gel formation of carp actomyosin by heating. Nippon Suisan Gakkaishi 45: 1023-1025 https://doi.org/10.2331/suisan.45.1023
  15. Taguchi T, Kikuchi K, Oguni M, Tanaka M, Suzuki K. 1978. Heat changes of myosin B $Mg^{2+}$-ATPase and 'setting' of fish meat paste. Nippon Suisan Gakkaishi 44: 1363-1366 https://doi.org/10.2331/suisan.44.1363
  16. Seki N, Uno H, Lee N, Kimura I, Toyoda K, Fujita T, Arai K. 1990. Transglutaminase activity in Alaska pollack muscle and surimi, and its reaction with myosin B. Nippon Suisan Gakkaishi 56: 125-132 https://doi.org/10.2331/suisan.56.125
  17. Numakura T, Seki N, Kimura I, Toyoda K, Fujita T, Takama K, Arai K. 1985. Cross-linking reaction of myosin in the fish paste during setting (suwari). Nippon Suisan Gakkaishi 51: 1559-1565 https://doi.org/10.2331/suisan.51.1559
  18. Nowsad AAKM, Kanoh S, Niwa E. 1994. Setting of surimi paste in which trans glutaminase is inactivated N-ethylmaleimide. Fish Sci 60: 189-191
  19. Sano T, Noguchi SF, Matsumoto JJ, Tsuchiya T. 1990. Effect of ionic strength on dynamic viscoelastic behavior of myosin during thermal gelation. J Food Sci 55: 51-54 https://doi.org/10.1111/j.1365-2621.1990.tb06014.x
  20. Visessanguan W, Ogawa M, Nakai S, An H. 2000. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin. J Agric Food Chem 48: 1016-1023 https://doi.org/10.1021/jf9900332
  21. Ogawa M, Kanamaru J, Miyashita H, Tamiya T, Tsuchiya T. 1995. Alpha-helical structure of fish actomyosin: Changes during setting. J Food Sci 60: 297-299 https://doi.org/10.1111/j.1365-2621.1995.tb05659.x
  22. Ogawa M, Nakamura S, Horimoto Y, An H, Tsuchiya T, Nakai S. 1999. Raman spectroscopic study of changes in fish actomyosin during setting. J Agric Food Chem 47: 3309-3318 https://doi.org/10.1021/jf9813079
  23. Arakawa T, Timasheff SN. 1982. Stabilization of protein structure by sugars. Biochem 21: 6536-6544 https://doi.org/10.1021/bi00268a033
  24. Carpenter JF, Crowe JH. 1988. The mechanism of cryoprotection of proteins by solutes. Cryobiol 25: 244-255 https://doi.org/10.1016/0011-2240(88)90032-6
  25. MacDonald GA, Lanier T. 1991. Carbohydrates as cryoprotectants for meats and surimi. Food Technol 45: 151-159
  26. Sato S, Tsuchiya T. 1992. Microstructure of surimi and surimi-based products. In Surimi technology. Lanier TC, Lee CM, eds. Marcel Dekker, New York. p 501-518
  27. Sultanbawa Y, Li-Chan EC. 2001. Structural changes in natural actomyosin and surimi from ling cod (Ophiodon elongatus) during frozen storage in the absence or presence of cryoprotectants. J Agric Food Chem 49: 4716-4725 https://doi.org/10.1021/jf001281x
  28. Kimira I, Sugimoto M, Toyoda K, Seki N, Arai K, Fujita T. 1991. A study on cross-linking reaction of myosin in kamaboko 'surimi' gels. Nippon Suisan Gakkaishi 57: 1389-1396 https://doi.org/10.2331/suisan.57.1389
  29. Sakamoto H, Kumazawa Y, Toiguchi S, Seguro K, Soeda T, Motoki M. 1995. Gel strength enhancement by addition of microbial trans glutaminase during inshore surimi manufacture. J Food Sci 60: 300-304 https://doi.org/10.1111/j.1365-2621.1995.tb05660.x
  30. Seguro K, Nozawa Y, Ohtsuka T, Toiguchi S, Motoki M. 1995. Microbial transgulutaminase and $\varepsilon$-($\gamma$-glutamyl) lysine crosslink effects on alastic properties of kamaboko gels. J Food Sci 60: 305-311 https://doi.org/10.1111/j.1365-2621.1995.tb05661.x
  31. Jiang ST, Leu AZ, Tsai GJ. 1998. Cross-linking of mackerel surimi by microbial transglutaminase and ultraviolet irradiation. J Agric Food Chem 46: 5278-5282 https://doi.org/10.1021/jf9806614
  32. Jiang ST, Hsieh JF, Ho ML, Chung YC. 2000. Combination effects of microbial trans glutaminase, reducing agent and protease inhibitor on the quality of haitail surimi. J Food Sci 65: 421-425 https://doi.org/10.1111/j.1365-2621.2000.tb16020.x
  33. Jiang ST, Hsieh JF, Ho ML, Chung YC. 2000. Microbial trans glutaminase affects gel properties of golden threadfinbream and Pollack surimi. J Food Sci 65: 694-699 https://doi.org/10.1111/j.1365-2621.2000.tb16074.x
  34. Hssieh JF, Tsai GJ, Jiang ST. 2002. Microbial transglutaminase and recombinant cystatin effects on improving the quality of mackerel surimi. J Food Sci 67: 3120-3125 https://doi.org/10.1111/j.1365-2621.2002.tb08868.x
  35. Jiang ST, Hsieh JF, Tsai GJ. 2004. Interactive effects of microbial transglutaminase and recombinant cystatin on the mackerel and hairtail muscle protein. J Agric Food Chem 52: 3617-3625 https://doi.org/10.1021/jf035102y
  36. Lorand L. 1983. Post-translationalpathways for generation $\varepsilon$-($\gamma$-glutarnyl) lysine cross-links. In Chemistry and biology of 2-macroglobulin. Feinman RD, ed. The New York Academy of Sciences, New York. p 10-27
  37. Kawai M, Takehana S, Takagi H. 1997. High-level expression of the chemically synthesized gene for microbial trans glutaminase from Streptoverticillium in Escherichia coli. Biosci Biotechnol Biochem 61: 830-835 https://doi.org/10.1271/bbb.61.830
  38. Yokoyama Kl, Nakamura N, Seguro K, Kubota K. 2000. Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci Biotechnol Biochem 64: 1263-1270 https://doi.org/10.1271/bbb.64.1263
  39. Nishimura K, Ohishi N, Tanaka Y, Ohgita M, Takeuchi Y, Watanabe H, Gejima A, Samejima E. 1992. Effects of ascorbic acid on the formation process for heat-induced gel of fish meat (kamaboko). Biosci Biotech Biochem 56: 1737-1743 https://doi.org/10.1271/bbb.56.1737
  40. Kaiser ST, Belitz HD. 1973. Specificity of potato isoinhibitors towards various proteolytic enzymes. Z Lebensm Unters Forsch 151: 18-22 https://doi.org/10.1007/BF01384275
  41. Hamann DD, Amato PM, Wu MC, Foegeding EA. 1990. Inhibition of modori (gel weaiening) in surimi by plasma hydrolysate ane egg white. J Food Sci 55: 665-669 https://doi.org/10.1111/j.1365-2621.1990.tb05202.x
  42. Wasso DH, Reppond KD, Babbitt JK, French JS. 1992. Effects of additives on proteolytic and functional properties of arrowtooth flounder surimi. J Aquat Food Prod Technol 1: 147-165 https://doi.org/10.1300/J030v01n03_10
  43. Anazawa H, Miyauchi Y, Sakurada K, Wasson DH, Repond KD. 1993. Evaluation of protease inhibitors in Pacific whitening surimi. J Aquat Food Prod Technol 2: 79-95
  44. Porter R, Koury B, Kudo G. 1993. Inhibition of protease activity in muscle extracts and surimi from Pacific whiting, Merluccious productus, and arrowtooth flounder, Atheresthes stomias. Marine Fish Rev 55: 10-15
  45. Reppond KD, Babbittt JK. 1993. Protease inhibitors affect physical properties of arrowtooth flounder and well eye Pollock surimi. J Food Sci 58: 96-98 https://doi.org/10.1111/j.1365-2621.1993.tb03218.x
  46. Morrissey MT, Wu JW, Lin DD, An H. 1993. Effect of food grade protease inhibitor on autolysis and gel strength of surimi. J Food Sci 58: 1050-1054 https://doi.org/10.1111/j.1365-2621.1993.tb06109.x
  47. Werasinghe VC, Morrissey MT, An H. 1996. Characterization of active components in food-grade proteinase inhibitor for surimi manufacture. J Agric Food Chem 44: 2584-2590 https://doi.org/10.1021/jf950589z
  48. Garcia-Carreno FL, Navarrette Del Toro MA, Diaz-Lopez M, Hernandez-Cortes MP, Ezquerra JM. 1996. Proteinase inhibition of fish muscle enzymes using legume seed extracts. J Food Prot 59: 312-318 https://doi.org/10.4315/0362-028X-59.3.312
  49. Seymore TA, Peters MY, Morrissey MT, An H. 1997. Surimi gel enahacement by bovine plasma proteins. J Agric Food Chem 45: 2919-2923 https://doi.org/10.1021/jf970176t
  50. An H, Weerasinghe V, Seymour TA, Morrissey MT. 1994. Degradation of Pacific whiteing surimi proteins by cathepsins. J Food Sci 59: 1013-1017 https://doi.org/10.1111/j.1365-2621.1994.tb08179.x
  51. Yamashita M, Konagaya S. 1990. High activities of cathepsins B, D, H and L in the white muscle of chum salmon in spawning migration. Comp Biochem Physiol 95B: 149-152
  52. Turk V, Bode W. 1991. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285: 213-219 https://doi.org/10.1016/0014-5793(91)80804-C
  53. Kirschke H, Barrett AJ. 1987. Chemistry of lysosomal proteases. In Lysosomes-Their role in protein breakdown. Glaumann H, Ballard FJ, eds. Academic Press, London. p 193-238
  54. Lenarcic ICB, Kraoovec M, Ritonja A, Olafsson I, Turk V. 1991. Inactivation of human cystatin C and kininogen by human cathepsin D. FEBS Lett 280: 211-215 https://doi.org/10.1016/0014-5793(91)80295-E
  55. Nakamura S, Takasaki H, Kobayashi K, Kato A. 1993. Hyperglycosylation of hen egg white lysozyme in yeast. J Biol Chem 268: 12706-12712
  56. Nakamura S, Ogawa M, Nakai S. 1998. Effects of polymannosylation of recombinant cystatin C in yeast on its stability and activity. J Agric Food Chem 46: 2882-2887 https://doi.org/10.1021/jf9801217
  57. Nakamura S, Ogawa M, Saito M, Nakai S. 1998. Application of polymannosylated cystatin to surimi from roeherring to prevent gel weakening. FEBS Lett 427: 252-254 https://doi.org/10.1016/S0014-5793(98)00437-2
  58. Sano T, Noguchi SF, Tsuchiya, Matsumoto JJ. 1986. Contribution of paramyosin to marine meat gel characteristics. J Food Sci 51: 946-950 https://doi.org/10.1111/j.1365-2621.1986.tb11205.x
  59. Liu D, ShiozawaY, Kanoh S, Niwa E. 1997. Effect of measuring temperature on the physical properties of horse mackerel gels. Nippon Suisan Gakkaishi 63: 231-236 https://doi.org/10.2331/suisan.63.231
  60. Olden K, Bernet BA, Humphries MJ, Yeo T-K, Yeo K-T, White SL, Newton SA, Bauer HC, Parent JB. 1985. Function of glycoprotein glycans. Trends Biochem Sci 10: 7882
  61. Gu J, Matsuda T, Nakamura R, Ishiguro H, Ohkubo I, Sasaki M, Takahashi N. 1989. Chemical deglycosylation of hen ovomucoid: protective effect of carbohydrate moiety on tryptic hydrolysis and heat denaturation. J Biochem 106: 66-70 https://doi.org/10.1093/oxfordjournals.jbchem.a122821
  62. Hall A, Hakansson K, Mason RW, Grubb A, Abrahamson M. 1995. Structural basis for the biological specificity of cystatin C. Identification of leucine 9 in the N-terminal binding region as a selectivity-conferring residue in the inhibition of mammalian cysteine peptidases. J Biol Chem 270: 5115-5121 https://doi.org/10.1074/jbc.270.10.5115
  63. Jiang S, Chen G, Tang S, Chen C. 2002. Effect of glycosylation modification ($N-Q-^{108}I{\rightarrow}N-Q-^{108}T$) on the freezing stability of recombinant chicken cystatin overexpressed in Pichia pastoris X-33. J Agric Food Chem 50: 5313-5317 https://doi.org/10.1021/jf0200321
  64. Tzeng S, Jiang S. 2004. Glycosylation modification improved the characteristics of recombinant chicken cystatin and its application on mackerel surimi. J Agric Food Chem 52: 3612-3616 https://doi.org/10.1021/jf0351016

Cited by

  1. Natural Food Additives and Preservatives for Fish-Paste Products: A Review of the Past, Present, and Future States of Research vol.2017, pp.1745-4557, 2017, https://doi.org/10.1155/2017/9675469