An Assessment of Bio-active Conformation of CAAX-based Tetrapeptide in Ras Farnesyltransferase Inhibition

Su-Jin Park and Kec-In Lee
Bro-()rgaic Science Division, Korea Research Instilute of Chemical Technology, P.O. Box 107. Yasong, Dacjeon 305-600, Korea
l-mal: kilee@kric. re.kr
Recerved Nowember I, $200+$

Key Words: Conformation, Turn-mimetic. CAAX motif. Ras farnesyltransferase

The protein product from the ras oncogene is a small G protein, p21 $1^{\text {ret }}$ (Ras), which is known to play a key role in the signal transduction cascade and cell differentiation and proliferation. Mutated Ras is unable to regulate itself and remains constantly activated, leading to uncontrolled cell growth. ${ }^{\text {. The function of Ras in signal transduction requires }}$ its location near the growth factor receptor at the cell membrane. However, Ras does not have a transmembrane domain. Ras requires famesylation to increase its hydrophobicity and subsequent plasma membrane association for its transforming activity. The zinc-containing enzyme, Ras farnesyltransfcrase (FTase) catalyzes the key post-translational modification, transfering a farnesyl group from farnesylpyrophosphate to the (-terminal cysteine of the Ras protein. The requirement provides a locused altention on FTase as a target for therapeutic intervention. ${ }^{2}$

In 1990, Goldstein and Brown discovered that small peptides containing the $\mathrm{C} \mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{X}$ sequence as shown in Figure 1 (C is cysteine, A is any aliphatic amino acid, and X is preferentially methionine) could act as alternative substrates and therefore compectitive inhibitors of FTase. The
tetrapeptide (VIM (1, $\left.\mathrm{IC}_{50}=150 \mathrm{nM}\right)$ inlibits FTase, but acts as a substrate for farnesylation. ${ }^{3}$ When the Λ_{2} position is occupicd by an aromatic acid as in CVF.M ($2, \mathrm{IC}_{50}-20 \mathrm{nM}$), it is no longer farnesylated and becomes a very potent inlibitor of FTase. ${ }^{1}$ This provides structural information for peptidomimetic inhibitor desigen of CAAX-based tetrapeptides.

Several groups suggested that the two interior residues of the CAAX peptides, typical hydrophobic residucs, served to confer an active conformation similar to a β-turn. The replacement of the interior peptide bonds with benzodiazepine in B7.A-2B ($3, \mathrm{IC}_{51},-0.8 \mathrm{n} . \mathrm{M}$) might serve to stabilize such a bent conformation. ${ }^{5}$ I lowever, other groups have postulated extended conformations for potent peptidomimetic inhibitors." The peptidominctic inhibitor, FTI$276(\mathbf{4 b}, \text { IC.511 }-0.5 \mathrm{nM})^{6 \mathrm{~b}}$ incorporates a lipophilic 2-phenyl-4-aminobenzoic acid as an isosteric replacement for the intemal Val-Phe dipeptide. The rigidity ol $\mathbf{4 b}$ only allows for this molecule to adopt the extended conformation. Because molecules incorporating extended peptide mimics as well as lutn-mimics have yielded equally strong inlibitors, there has

2

4a: $\mathrm{X}=\mathrm{O} ; \mathrm{R}=\mathrm{MTE}$
4b: $\mathrm{X}=\mathrm{H}_{2} \mathrm{R}=\mathrm{MTE}$
4c: $\mathrm{X}=\mathrm{O} ; \mathrm{R}=s \cdot \mathrm{Bu}$
4d: $\mathrm{X}-\mathrm{H}_{2} ; \mathrm{R}=s$-Bu

Figure 1. Representative FTase inhibitors based on CAAX-motif (MTE methylthioethyl).
been considerable debate concerning the active conformations of CAAX-peptide substrates and inhibitors.

One of advantage of aromatic spacer is that by attaching amino and carboxyl groups at different positions on the aromatic rings can control the distance between cysteine and methionine. In this study, we designed and synthesized 2-phenyl-5-aminobenzoate as a turn-scaffold. We envisioned that this study confer an assessment of bio-active conformation of CAAX-based tetrapeptide by the changes of aromatic substitution patterns. Here, we would like to report the synthesis and biological evaluation of tetrapeptide turnmimetics.

Results and Discussion

The reguired 2 -phenyl-5-nitrobenzoic acid 7 was easily prepared from the commercially available 2-bromo-5-nitrotoluene 5. The bromide 5 was coupled with phenylboronic acid to give 2-phenyl-5-nitrotoluene 6 under Suzuki coupling conditions. ${ }^{7}$ The toluene derivative 6 was transformed to

2-phenyl-5-nitrobenzoic acid 7 by potassium permanganate oxidation. The benzoic acid 7 was coupled with Met-OMe and Leu-OMe using EDCl-HOBT coupling, followed by reduction with stannous chloride, ${ }^{8}$ respectively, to furnish the amines $9 \mathbf{a}$ and $9 \mathbf{b}$. The resulting 5 -amino-2-phenylbenzoate 9 a was coupled with N -Boc-S-trityl-cysteine using isobutyl chlorofomate (IBCF) and reductively alkylated with N-Boc-S-trityl-cysteinal ${ }^{\prime \prime}$ by the action of sodium cyanoborohydride to give the cysteine derivatives $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$, respectively. The leucine derivatives $\mathbf{1 0 c}$ and $\mathbf{1 0 d}$ were also similarly prepared from 9 b . The methyl esters $\mathbf{1 0 a - d}$ were hydrolyzed by LiOH and then deprotected by trifluoroacetic acid in the presence of triethylsilane, as shown in Scheme 1. The final compounds 11a-d were obtained through Prep HPLC separation and showed purity greater than 97%.

In 1, the number of conformations with similar low energies is large due to the many possible bond rotations. Conformational calculations were carried out in the absence of solvent using the Amber force field within the Macro-

a

b

c

Figure 2. Finergy-minimization of 1 in (a) extended. (b) turn conformation. (c) overplay of the live lowest energy conformations.

9a: $\mathrm{R}=\mathrm{MTE}$
9b: $\mathrm{R}=s$ - Bu

10a: $\mathrm{X}=\mathrm{O} ; \mathrm{R}=\mathrm{MTE}$
10b: $\mathrm{X}=\mathrm{H}_{2} ; \mathrm{R}=\mathrm{MTE}$
10c; $\mathrm{X}=\mathrm{O} ; \mathrm{R}=s-\mathrm{Bu}$
10d: $\mathrm{X}=\mathrm{H}_{2} ; \mathrm{R}=s$ - Bu

11a: $X=O ; R=$ MTE
11b: $\mathrm{X}=\mathrm{H}_{2} ; \mathrm{R}=\mathrm{MTE}$
11c: $\mathrm{X}=\mathrm{O} ; \mathrm{R}=s-\mathrm{Bu}$
11d: $\mathrm{X}=\mathrm{H}_{2} ; \mathrm{R}=s$ - Bu
 86% iii. EDCI, HOBT, Et ${ }^{2}$ N. Met-OMe. 70% (for 8 a). Leu-OMe. 83% (for 8 b): iv. $\mathrm{SnCl}_{2} .88 \%$ (for 9 a). 92% (for 9) : v. IBCF. VMM. -20 ${ }^{\circ} \mathrm{C}, \mathrm{A}$-Boc-S-Tr-Cys. 75% (for $\mathbf{1 0 a}$). 76% (for $\mathbf{1 0 c}$): $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{A}$-Boc-S-Tr-Cysteinal. 79% (for $\mathbf{1 0 b}$). $\mathbf{7 8 \%}$ (for 10d): vi. LiOH: TFA. FL:Sill: Prep-HIPI.C. 40% (for 11a). 38% (for 11b), 78% (for IIe). 72% (for IId): MTF = methylthioethyI.

Model program. Figure 2 shows two possible conformations in which 1 takes up either an extended or a turn-like conformation. Molecular modeling indicates the distance from C_{α} of Cys to C_{α} of Met in 1 is about $10.3 \AA$ in an extended. whereas $5.6 \AA$ in a turn conformation. Within a turn conformation, the thiol group of Cys points to the carboxylate moiety of Met. It adopts a non-ideal turn confornation characterized by the lack of a transannular hydrogen bond. As an application of global energy minimization, it converged to a tum conformation.
An energy-minimized structure for $\mathbf{t b}$ maintains at a distance of $9.8 \AA$ analogous to the extended conformation of 1, because parcr-relationship makes it impossible for this molecule to adopt β-turn conformations. Whereas, a metcisomer of $\mathbf{1 1 b}$ has a similar shape and the distance of $5.9 \AA$ to the tum conformation of 1 , as shown in Table 1 . This examination suggests that 3-aninobenzoic acid may serve as a turn-scaffold. Further examination of electrostatic potential maps for the two molecules, $\mathbf{4} \mathbf{b}$ and $\mathbf{1 1 b}$, was carried out using the AM1 semi-empirical within Spartan program. Molecular mechanics indicates the surface area and volume of the mett-isomer 11b are about $413.72 \AA^{2}$ and $251.13 \AA^{3}$. and about $376.91 \AA^{\mathcal{2}}$ and $219.11 \AA^{3}$ in the para-isomer $\mathbf{4 b}$. In a given substrate. a turn structure of 11b may take up a larger effective hydrophobic surface than an extended structure of $\mathbf{t b}$. Thus. a simple transposition of the substitution pattern greatly changes the distance and shape of an entire molecule. and may allow a unique mimicking of a tum conformation.
Whereas ta retains good inhibitory activity, its metcrisomer 11a is 2,000 -fold less active against FTase, as shown in Table 2. ${ }^{\text {ti }}$ Then, the amide bond linking cysteine and 3 aminobenzoate was reduced to a secondary amine, which is expected to reduce susceptibility to protease degradation and to improve cellular uptake. Renlarkably, the reduction of the cysteine amide (in 11a) to an amine (in 11b) provides a 2200 -fold euhancement of potency. Presumably. the enhancement of potency is due to the relaxation of an unfavorable conformational restriction provided by the reduction of cysteine amide to the amine. ${ }^{11}$ The reduced $\mathbf{4 b}$ (FTI-276) still retains its high potency and is 8 -fold more active than 11b towards FTase. Inhibitory activity is dependent on the ring-substitution pattern. Indeed the introduction of 3 -aminobenzoic acid onto the meta-isomers

Table 1. Molecular shape

CAAX	Distance ${ }^{a}$ (A)	Surface Area ${ }^{b}$ $\left(\AA^{*}\right)$	Volume ${ }^{c}$ (\AA^{3})
$1 \mathrm{a}^{\text {d }}$	10.3	$n d^{f}$	nd
$1 b^{6}$	5.6	nd	nd
+b	9.8	376.91	219.11
11b	5.9	413.72	251.13

"Distance from C_{α} of Cys to $\mathrm{C}_{\alpha a}$ of Met (Amber force field within Macromodel). ${ }^{\text {. Electrostatic potential surface area (AM1 semi-empirical }}$ within Spartan). ${ }^{\text {'Electrostatic potential volume (AM1 semi-empirical). }}$ "Extended conformation of $\mathbf{1}$ (Amber force field). "Turn conformation of 1 (Amber force field). Not determined
(11a-d) does not improve inhibition activity comparing to 4 aminobenzoic acid of the para-isomers (ta-d). These results clearly suggest that para-isomers $+\mathbf{a}, \mathrm{b}$ containing 4 aminobezoic acid provide exact positioning of the Cys and Met residues in the enzyme active site. while meta-isomers 11a, \mathbf{b} do not. In the given structures. the results emphasize that an extended conformation is pretty much important in FTase inhibition

In conclusion. the aromatic spacers are designed to control the distance between Cys and Met to probe a bioactive confomation of the CAAX tetrapeptide. Changing the substitution pattern probes the distance and shape of the entire molecule in order to explore bio-active conformations. ${ }^{12}$ Our results demonstrate that a turn conformation is not required for inhibitory activity. presumably, it does not provide exact positioning of the Cys and Met residues in the enzyme active site. More recent evidence. particularly from the disclosure of the temary complex of the FTase has provided insight into the extended conformation of the CAAX peptidomimetics is more favorable. ${ }^{13}$

Experimental Section

5-Nitro-2-phenylbenzoyl-methionine methyl ester (8a). The acid 7 ($1.43 \mathrm{~g}, 5.96 \mathrm{mmol}$) was suspended in methylene chloride (30 mL). To this solution were added methionine methyl ester hydrochloride (1.31 g .6 .55 mmol), triethylamine (0.92 mL .6 .55 mmol$), \mathrm{EDCI}(1.37 \mathrm{~g} .7 .15 \mathrm{mmol})$ and HOBT (0.97 g .7 .17 mmol) in an ice bath. The mixture was stirred for 10 lur at room temperature and then partitioned with methylene chloride and INHCl . The organic layer was washed with 5% sodium bicarbonate and water and dried over anhydrous magnesium sulfate. After evaporating solvents, the solid residue was recrystallized from ethyl acetate to give $\mathbf{8 a}(1.64 \mathrm{~g} .70 .8 \%):{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}) .8 .32(\mathrm{dd}, 1 \mathrm{H}, J=9.0 .3 .0$ $\mathrm{Hz}), 7.56(\mathrm{~d} .1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.46-7.25(\mathrm{~m} .5 \mathrm{H}) .6 .07(\mathrm{~d}$, $1 \mathrm{H} . J=7.5 \mathrm{~Hz}$). 4.68 (dd. $1 \mathrm{H} . J=12.2 .7 .0 \mathrm{~Hz}$). 3.68 (s. $3 \mathrm{H}) .2 .06$ (t. $2 \mathrm{H}, J=9.0 \mathrm{~Hz}) .2 .00(\mathrm{~s} .3 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.78$ $(\mathrm{m}, 1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{2}\right) \delta 171.7,167.0,147.2,146.1$, 138.2. 136.4. 131.8, 129.3. 129.2. 128.7. 125.0. 124.4. 52.8 . 52.1. 31.3, 29.5. 15.5: HRMS (EI) calculated for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: 388.1092$, found: 388.1084 .

N -Boc- S -Ti-cysteinyl-(5-amino-2-phenyl)benzoyl-methionine methyl ester (10a). The commecially available N -Boc-S-Trity-cysteine (278 mg .0 .6 mmol) was dissolved in dichloromethane (7 mL). To this solution was added NMM

Table 2. FTase inlibition ($\mathrm{IC}_{50}, \mathrm{nM}$)

CAAX a	FTase	CAAX b	FTase
$\mathbf{4 a ^ { c }}$	4.5	$11 \mathbf{a}$	9,100
$\mathbf{4 b}^{d}$	0.5	$\mathbf{1 1 b}$	4
$\mathbf{4 c}$	$1 \mathbf{a}^{e}$	$11 \mathbf{c}$	5,300
$\mathbf{4 \mathbf { d } ^ { d }}$	25	$\mathbf{1 1 d}$	90

${ }^{\circ}$ Corresponding p-isomers to $\mathbf{1 1}$. "Corresponding n-isomers to 4. 'See ref. 6(a). ${ }^{\text {S See ref. } 6(b) . ~ N o t ~ a v a i l a b l e . ~}$
(132 mL .1 .2 nmol) at $-20^{\circ} \mathrm{C}$ under argon. followed by IBCF ($78 \mathrm{~mL}, 0.6 \mathrm{nmol}$). The reaction misture was allowed to stir for 15 min . At this time TLC showed the absence of the starting material. To this solution the amine $9 \mathbf{a}$ (227 mg . 0.57 mmol) was introduced. The reaction mixture was stirred 2 lr at the same temperature. The reaction mixture was washed with $1 \mathrm{~N} \mathrm{HCl} .5 \%$ sodium bicarbonate and water, dried over magnesiun sulfate. and solvent was removed. The residue was chromatographed on silica gel using 30% ethyl acetate in hexanes to yield 10 a ($3+4 \mathrm{mg} .75$ $\%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.57$ (br s, 1 H), 7.81 (dd. $1 \mathrm{H}, J=8.4,2.2 \mathrm{~Hz}), 7.45-7.19(\mathrm{~m}, 22 \mathrm{H}), 6.27(\mathrm{br} \mathrm{s} .1 \mathrm{H})$. $5.07(\mathrm{br} \mathrm{s} .1 \mathrm{H}) .4 .65(\mathrm{dd}, 1 \mathrm{H} . J=12.6 .7 .2 \mathrm{~Hz}), 4.12(\mathrm{br} \mathrm{s}$. $1 \mathrm{H}), 3.66(\mathrm{~s} .3 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{IH} . J=12.8 .7 .1 \mathrm{~Hz}) .2 .63$ (dd. $1 \mathrm{H}, J=12.8 .5 .5 \mathrm{~Hz}), 2.12(\mathrm{t} .2 \mathrm{H}, J=7.5 \mathrm{~Hz}) .2 .00(\mathrm{~s} .3 \mathrm{H})$. $1.92(\mathrm{~m} .1 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s} .9 \mathrm{H}) ;$ FAB-MS (MNBA. $\mathrm{NaCl}) m z 826[\mathrm{M}+\mathrm{Na}]^{-}$.
5-[(2R)-N-Boc-amino-3-S-Tr-propyl]amino-2-phenyl-benzoyl-methionine methyl ester (10b). To a solution of 2-phenyl-5-aminobenzoyl-methionine methyl ester 9a (158 mg. 0.4 nmol) and N-Boc-S-tritylcysteinal (1.2 equiv) in methanol (10 mL) were added acetic acid (0.5 mL). followed by sodium cyanoborohydride ($38 \mathrm{mg}, 0.6 \mathrm{~nm}$ mol). The reaction mixture was allowed to react overnight. After removal of the solvent, the residue was partitioned with ethyl acetate and 5% sodium bicarbonate. The organic layer was washed with water and brine, dried over magnesium sulfate. and solvent was removed. The residue was chromatographed on silica gel using 30\% ethyl acetate in hexanes to yield 10b ($252 \mathrm{mg} .79 .7 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 7.56-7.23(\mathrm{~m}, 21 \mathrm{H}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 6.76$ (dd. $1 \mathrm{H} . J=8.3,2.5 \mathrm{~Hz}$). 5.93 (d, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}$). 4.76 (dd. $1 \mathrm{H}, J=12.5 .7 .1 \mathrm{~Hz}$). 4.66 (br s, 1 H). 4.09 (br s, 1 H), 3.88 (br s. 1 H). $3.75(\mathrm{~s} .3 \mathrm{H}) .3 .21(\mathrm{t}, 2 \mathrm{H}) .2 .57(\mathrm{~d} .2 \mathrm{H}) .2 .12(\mathrm{~m}$. $2 \mathrm{H}), 2.10(\mathrm{~s} .3 \mathrm{H}) .2 .03-2.19(\mathrm{~m}, \mathrm{H}) .1 .85-1.78(\mathrm{~m}, \mathrm{IH})$. 1.54 (s. 9H); FAB-MS (MNBA. NaCl) $m z 812[\mathrm{M}+\mathrm{Na}]^{-}$.

Cysteinyl-(5-amino-2-phenyl)benzoyl-methionine (11a). To a solution of the methyl ester $10 \mathrm{a}(285 \mathrm{mg} .0 .35 \mathrm{mmol})$ in THF (5 mL) and methanol (3 mL) was added 1 NLiOH (1 mL) in an ice-salt bath. The reaction minture was stirred for 4 hr . The reaction mixture was adjusted to $\mathrm{pH} 2-3$ with 1 N HCl at the same temperature and the solvent was evaporated. The resulting residue was partitioned between chloroform and water. The organic phase was dried over anhydrous magnesium sulfate and concentrated in vacuo to give the resulting free acid in a quantitative yield. Without purification, the acid was used to the next reaction. To a solution of the acid in dichloromethane (5 mL) were added TFA (2 mL) and a few drops of triethylsilane. After 3 h . the reaction mixture was thoroughtly evaporated under high vacum to give an oily residue. The residue was triturate with anhy-
drous ether and the white solid was collected by filtration to give the crude compound. which was then purified by PrepHPLC to afford 11a ($80 \mathrm{mg} .40 .7 \%$): HPLC 98% (purity): ${ }^{1} \mathrm{H}$ NMR (300 MHz CD3OD) $\delta 7.83$ (d, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}$), $7.75(\mathrm{dd}, 1 \mathrm{H}, J=8.4 .2 .1 \mathrm{~Hz}), 7.44-7.32(\mathrm{~m}, 6 \mathrm{H}) .4 .49(\mathrm{dd}$, $1 \mathrm{H} . J=9.5 .3 .9 \mathrm{~Hz}), 4.17(\mathrm{t}, 1 \mathrm{H} . J=6.6 \mathrm{~Hz}), 3.17(\mathrm{dd}, 1 \mathrm{H} . J$ $=14.6 .5 .1 \mathrm{~Hz}) .3 .05$ (dd. $1 \mathrm{H} . J=14.5 .7 .0 \mathrm{~Hz}$), 2.20-2.14 $(\mathrm{m}, 2 \mathrm{H}) .2 .12-2.04(\mathrm{~m} . \mathrm{IH}) .2 .00(\mathrm{~s}, 3 \mathrm{H}) .1 .85-1.77(\mathrm{~m}, \mathrm{IH})$; FAB-MS (MNBA, NaCl$) m z 470[\mathrm{M}+\mathrm{Na}]^{+}$.

References and Note

1. (a) Bos, J. L. Cancer Res. 1989. 19. 4682. (b) Barinaga, M. Science 1997. 278. 1036.
2. (a) Park. H.W.: Beese. L. S. Curr. Opm. Struct. Biol. 1997. 7. 873. (b) Matthews. R. G.: Goulding. C. W. Curr. Opin. Chent. Biol. 1997, 1, 332. (c) Hightower, K. E.; Fierke, C. A. Cwr: Opin. Chem Biol. 1999. 3. 176.
3. Goldstein, J. L.; Brown, M. S. Nature 1990, 3+3. 425.
4. Brownt. M. S.: Goldstein. J. L.: Paris. K. T.: Burnier. T. P.: Marsters. T. J. Proc. Nafl Acad. Sci. USA 1992. 89.8313.
5. Maresters. T. C.. Jr.: McDowell. R. S.: Reynilds. M. E.: Oare. D. A.; Somers. T. C.: Stanley, M. S.: Rawson, T. E.; Struble. M. E.; Burdick, D. J.; Chan, K. S.; Duarte, C. M.; Paris, K. J.: Tom. J. Y; Wan, D. T:; Xue, Y.: Burnier. J. P. Bioorg Aled. Chem. 1994, 2. 949.
6. (a) Qian1. Y.: Marugan1. T. J.: Fossum. R. D.: Vogt. A.: Sebti. S. M.: Hamilton. A. D. Bioorg. Med. Chen. 1999. 7. 3011 . (b) Lemer. E. C.: Qian. Y.: Hamilton1. A. D.: Sebti. S. M. J. Biol. Chen. 1995. 270.26770. (c) Clere. F.-F:' Guitton, J.-D.: Fromage. N.: Lelievre. Y.: Duchesne. M.: Tocque. B.: James-Surcouf, E.: Commercon. A.; Becquart, J. Bioorg, Med Chem. Lett. 1995, $5,1779$.
7. (a) Miyaura. N.: Yanagi. T.: Suzuki. A. Smht. Conmum. 1981. M. 513. (b) Wallow. T. I.: Novak. B. M. J. Org. Chem. 1994. 59. 5034.
8. Bellamy, F. D.: Ou, K. Terahedron Lett. 1984. 25.839.
9. Graham. S. L.: deSolms. S. J.; Giuliani. E. A.: Kohl. N. E.; Mosser. S. D.; Oliff, A. I.: Pompliano, D. L.: Rands, E.: Breslin. M. J.: Deana. A. A.: Garsky. V. M.: Scholz. I. H.: Gibbs. T. B.: Smith. R. L. J. Med. Chen. 1994. 37.725.
10. The author is deeply indebted to Dr. Andreas Vogt. Department of Pharmacology. University of Pittsburgh. for providing in vito FTase inhibition assay. The assay was determined by measuring the amount of $\left[{ }^{3} \mathrm{H}\right]$-farnesyl group transferred from $\left[{ }^{3} \mathrm{H}\right]$-FPP to $\mathrm{p} 2 \mathrm{I}^{\mathrm{H}-\mathrm{ras}}$. Each assay solution contained peptides peptidomimetics. $200 \mathrm{ng} \mathrm{p} 21^{\text {ras }}$ FTase. $10 \mathrm{pM}\left[{ }^{3} \mathrm{H}\right]-\mathrm{FPP} .15 \mathrm{mM} \mathrm{p} 21^{\mathrm{H} \cdot \mathrm{ras}} .50 \mathrm{mM}$ Tris- $\mathrm{HCl}(\mathrm{pH}=7.5) .50 \mathrm{mM} \mathrm{ZnCl}_{2} .20 \mathrm{mM} \mathrm{KCl}$. and 1 mMDTI . Reaction mixtures were incubated at $37^{\circ} \mathrm{C}$ for 30 min . filtered on glass fiber filters, and processed for scintillation counting.
11. Dinsmore. C. J.; Williams. T. M.; Hamiltom, K.: O'Neill, T. J.; Rands. E.: Koblan. K. S.: Kohl. N. E.: Gibbs. J. B.: Graham. S. L.: Hartman. Gi D.: Olift. A. I. Bioorg Med. Chem. Lett. 1997. 7. 1345.
12. Sung. N.-D.: Cheun, Y. G.: Kwon, B.-M.: Park, H. Y.: Kim, C. K. Bull. Korean Chem. Soc. 2003, 24, 1509.
13. Strickland. C. L.: Windsor, W. T.; Syto. R.: Wang, L.: Bond. R; Wu. Z.: Schwartz. T.: Le. H. V:: Beese. L. S.: Weber. P. C. Biochentismy 1998.37.16601.
