Synthesis of 3-Benzyl-2-hydroxy-7,8-dihydro-6 H -quinolin-5-ones from Baylis-Hillman Adducts

Saravanan Gowrisankar, Jeong Eun Na, Mi Jung Lee, and Jae Nyoung Kim"
Deparment of (hemistry and Instifute of Basic Science, (homam Natonal liniversity, Giwangiz 500-757, Korea
*:-mail: kimin@chomamac: or Recerved October 7, 200t

Key Words: 3-Benzyl-2-hydroxy-7,8-dihydro-6//-quinolin-5-ones, Baylis-Hillman adducts, Isomerization, Enaminones, DBU

2-Hydroxy-7,8-dilydro-6 H -quinolin-5-one skelcton is a useful backbone for the synthesis of numerous biologically interesting compounds ${ }^{1-3}$ such as carbostyrils (2-hydroxyquinolines) ${ }^{15 \cdot 20}$ or huperzine A analogues, ${ }^{\text {la }}$ which have shown biological activities including non-steroidal antiinflammatory activity, ${ }^{\text {Jc }}$ acetylcholinesterase (AChE) inhibitory activity ${ }^{\text {la }}$ and antimalarial activity. ${ }^{\text {Ih } 2 \mathrm{at}}$
During the studies on the chemical transformation of the Baylis-I Iillman adducts toward synthetically useful heterocyclic compounds ${ }^{4}$ we envisioned that we could synthesize 3-benzyl-5-methoxycarbostyril derivatives 5 . Our synthetic rationale for $\mathbf{5 a}$ is depicted in Scheme 1 . Reaction of the Baylis-Hillman acetate 1 and cyclic enaminone 2^{5} would provide the tetrahydroquinoline-2,5-dione skeleton 3 via $S_{, ~ 2}$ ' type reaction of cyclic enaminones to the BaylisHillman acetates followed by amide bond formation. We thought that the following iodine-assisted oxidative aromatization of cyclohexenone moiety ${ }^{6}$ and base-catalyzed isomerization of lactam moiety would afford the desired 3-benzyl-5-methoxycarbostyril derivative 5.

The reaction of Baylis-t Iillman acetate 1a and 3-amino-2-
cyclohexcnone (2a) in refluxing ethanol in the presence of catalytic amount of acetic acid gave 3-benrylidene-4,6,7,8-tetralydro-1 $H, 3 H$-quinoline-2,5-dione (3a) as the major product (52%) together with small amounts of $\mathbf{4 a}$ ($<10 \%$). The reaction could also be conducted in n-butanol without acetic acid catalyst in a similar pattern. But, when we used n butanol as the solvent, 4 a was observed as the major product on TLC presumably due to the effect of higher reaction temperature than in Et(O)l. But, 3a was not changed completely into 4 a even after heating for a long time. Thus we examined the conditions for the effective Iransformation of 3 a into 4 a and we found a suitable condition fortunately. Conversion of 3 a into 4 a could be carried out casily with catalytic amounts of DBU in THF at room temperalute (reflux for the conversion of $\mathbf{3 g}$ into $\mathbf{4 g}$, entry 7 in Table 1). Thus, we prepared 4a-c according to the following procedures: reaction of $\mathbf{1 a - c}$ and $\mathbf{2 a}$ in relluxing $n-\mathrm{BuOH}$, separation of $\mathbf{3}$ and $\mathbf{4}$ as a mixtures, and finally DBU treatment to form 4a-c as the final products (entries I-3 in Table I).

It is interesting to note that the easiness for the conversion

Table 1. Synthesis of 4a-g
Entry
of the lactam derivatives $\mathbf{3}$ into $\mathbf{4}$ was dependent upon the structure of the enaminones $2 a-c$. When we used enaminone 2a (entrics 1-3), mixtures of $\mathbf{3}$ and 4 were produced as mentioned above. Without separation, treatment of the mixtures with catalytic amounts of DBC produced 4. However, we obscrved the exclusive formation of $\mathbf{4 d}-\mathbf{f}$ without DBU treatment in the reactions of enaminone $2 \mathbf{b}$, which was derived from dimedone (5,5-dimethyl-1,3cyclohexancdione, entrics 4-6). To the contrary, only the lactam form $\mathbf{3 g}$ was observed for the enaminone $\mathbf{2 c}$ (entry 7).

The reason for such different reactivity depending on the structure of enaminones $2 \mathbf{a}-\mathrm{c}$ cannot be explained at this stage.
As a next trial, we examined the feasibility for the aromatization reaction of the remaining cyclohexenone moicty of $4 \mathbf{a}$ in order to synthesize 3,5-disubstituted carbostyril derivative eventually. However, unfortunately, all the efforts were found to be ineffective including iodine/
 $\mathrm{Hg}(\mathrm{OAc})_{2}$, iodine $/ \mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6} / \mathrm{MeOH}$, or Pd / C in

Scheme 2
decaline. It is interesting to note that the aromatization of cyclohexenone moiety of 3 a could be conducted with iodine $/ \mathrm{McOH}$ system $\left(40-50^{\circ} \mathrm{C}, 16 \mathrm{~h}\right)$ to afford 6a although in low yield (36%). ${ }^{7}$ However, the same reaction conditions did not act in the same manner for the transfomation of 4 a toward 5a as noted above. Morcover, the isomerization of 6a into the desired carbostyril derivative 5 a failed with DBU treatment again, unfortunately (Scheme 2).
In summary, we prepared 3-benzyl-2-liydroxy-7,8-di-hydro-6 $/ /$-quinolin- 5 -one derivatives $4 a-f$ from the reaction of Baylis-Hillman acetates and cyclic enaminones in moderate yiclds. Suitable aromatization method of the cyclohexenone moiety in our compounds is currently investigating.

Experimental Section

Typical procedure for the synthesis of 4 a (Method A): A stirred solution of the Baylis-Hillman acetate 1 a (700 mg , 3 mmol) and enaminone 2 a ($222 \mathrm{mg}, 2 \mathrm{mmol}$) in n-butanol (5 mL) was heated to reflux for 18 h . After usual aqucous workup and column chromatographic separation (E1OAc) hexanes, 1:1) we obtained a mixture of 3 a and 4 a in 61% isolated yield (310 mg). The mixlute of 3 a and 4 a (152 mg , 0.6 mmol) was dissolved in THF (5 mL) and DBL (28 mg, 0.18 mmol) was added and stirred at room temperature for 2 h. After usual aqueous workup and column chromatographic separation (EtOAchexancs, 1:1) we obtained $4 \mathfrak{a}$ in 58% isolated yield (89 mg). The spectroscopic data of $\mathbf{3 a}, \mathbf{3 g}, \mathbf{4 a}-$ c. and 4 g are as follows.

3a: white solid, $\mathrm{mp} 229-232^{\circ} \mathrm{C}$; ${ }^{\mathrm{H}} \mathrm{H} \times \mathrm{MR}\left(\mathrm{CDCl}_{3}\right) \delta 2.09$ (quintet. $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.42-2.51 (m, 4H), $3.72(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.87(\mathrm{t}, j=2.7$ $\mathrm{H} z, \mathrm{IH}) ;{ }^{1.3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.32,24.81,27.48,36.55$, $110.78,125.35,128.68,129.30,130.64,134.86,139.35$, 149.95, 165.64. 195.83.

3 g : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.90(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 8.87 (br s, 1H).

4a: white solid: mp $238-240^{\circ} \mathrm{C},{ }^{\prime} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.11$ (quintet, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t} . J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.8 \mathrm{I}(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.85(\mathrm{~s}, \mathrm{IH})$, $12.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}):{ }^{1.3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.44,26.75,35.98$, $37.15,114.64,126.33,128.38,129.03,130.41,135.73$, 139.10, 154.04, 165.32, 194.07.

4b: white solid: mp 237-238 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.12$ (quintet. $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.54(\mathrm{t} . J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=$
$6.3 \mathrm{H}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.26(\mathrm{mn}, 4 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H})$, 12.85 (br s. 1 H), ${ }^{1.3} \mathrm{C}$ NMR (CDCl) $\delta 21.38,26.73,35.49$. $37.11,114.64,128.44,129.78,130.34,132.12,135.89$. 1.37.58, 154.24, 165.24, 194.02.

4 c : white solid; $\mathrm{mp} 218-220^{\circ} \mathrm{C} \cdot{ }^{1} \mathrm{H} . \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.11$ (quintet, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.82(\mathrm{t}, J-6.3 \mathrm{H} \subset, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J-7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~s}, \mathrm{IH}), 12.90(\mathrm{br} \mathrm{s}$, $1 \mathrm{H})$: ${ }^{13} \mathrm{C}$ N $\mathrm{MR}\left(\mathrm{CDCl}_{3}\right) \delta 21.00,21.43,26.73,35.48,37.16$. $114.63,128.90,129.07,130.62,135.55,135.81,135.95$, 153.99, 165.38, 194.11.

4g: white solid; mp 233-235 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.43$ $(\mathrm{s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.31(\mathrm{~m}, 5 \mathrm{H}), 8.03(\mathrm{~s}$, 1 H), $11.49(\mathrm{br} \mathrm{s} 1 \mathrm{H}$.$) ; { }^{1 .} \mathrm{C}$ NMR (CDCl_{3}) $\delta 28.46,29.92$. 35.71, 123.37, 126.54, 127.17, 128.56, 128.58, 138.11. $138.80,146.19,150.63,159.95,164.37$

Typical procedure for the synthesis of 4 d (Method B): A stirred solution of the Baylis-Hillman acetate $1 \mathrm{a}(700 \mathrm{mg}$. 3 mmol) and cnaminone $2 \mathbf{b}$ ($278 \mathrm{mg}, 2 \mathrm{mmol}$) in n-butanol (5 mL) was heated to reflux for 24 h . After usual aqueous workup and column chromatographic separation (EtOAc/ hexancs, I : I) we obtained $\mathbf{4 d}$ in 41% isolated yield (230 mg). The spectroscopic data of 4d-f are as follows.

4d: white solid; mp $212-214^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} . \mathrm{V} . \mathrm{MR}\left(\mathrm{CDCl}_{3}\right) \delta 1.12$ $(\mathrm{s}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.31(\mathrm{~m}$, $5 \mathrm{H}), 7.84(\mathrm{~s}, \mathrm{IH}), 12.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{1 .} \mathrm{C}$.N.MR ($\left.\mathrm{CDCl}_{3}\right) \delta$ $28.25,33.18,36.09,40.28,50.93,113.65,126.36,128.40$. 129.04, 130.17, 135.45, 139.09. 152.60, 165.68, 194.02.

4e: white solid; mp 207-208 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \wedge \mathrm{MR}\left(\mathrm{CDCl}_{3}\right) \delta 1.13$ $(\mathrm{s}, 6 \mathrm{H}), 2.40(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}) .7 .23(\mathrm{~s}, 4 \mathrm{H})$, $7.85(\mathrm{~s}, \mathrm{IH}) .13 .07(\mathrm{br} \mathrm{s}, \mathrm{IH}) ;{ }^{1 .} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.16$, $33.10,35.53,40.16,50.81,113.60,128.39,129.46,130.30$. $132.03,135.57,137.52,152.81,165.61,193.94$.
4f. white solid; mp $188-190{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.12$ $(\mathrm{s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H})$, $7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~s}$, IH). $12.66(\mathrm{br} \mathrm{s}, \mathrm{IH}) ;{ }^{\mathrm{H}} \mathrm{C}$. VMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.22,29.68$, $33.19,35.57,40.32,50.93,113.69,128.95,129.13,130.51$. $135.31,135.84,135.92,152.38,165.62,194.01$.

Acknowledgements. This work was supported by Korca Research Foundation Grant (KRF-2002-015-CP0215).

References and Notes

1. For the usefulness of 2-hydroxy-7,8-dihydro-6H-quinolin-5-one derivatives as symhetic intermediates, see: (a) Carlier, P. R.: D_{u}, D.-M.: Han, Y.-F., Liu, J.; Perola, E.: Williams, I. D.; Pang, Y.-P. Anger. (hem. Int. İd. 2000. 39, 1775. (b) El-Sheikh, M. I.; Cook, J. M. J. Ong. (hem. 1980, $+5,2585$ (c) Scluroder, E.; Lehmanti, M.; Bottcher, I. Kitr J. Med. ('hem. 1979, If, 499.
2. For the synthesis of 2-hydroxy-7.8-dihydro-6H-quinolin-5-one derivatives from cyclic enaminones, see: (a) Peltit, G R.; Fleming, W. C., Paull, K. D. /. Oeg (hem. 1968, 33, 1089. (b) Shono, T.; Matsumura, Y.: Kashimura, S. J. Ong. (hem. 1981, 46, 3719.
3. For the synthesis of 2-hydroxy-7.8-dihydro-6H-quinolın-5-ones and related compounds, see: (a) Oehldrıch, J.; Cook; J. M. J. Org. (hem. 1977. 42, 889 . (b) Mosti, L.; Schenone, P.; Menozzi, G I. Heterecechc (hem. 1985, 22, 1503. (c) Blanco, M. M.; Avendano,
C.: Menendez. J. C. Syntet 2000. 689. (d) Pascual-Alfonso. E.: Avendano. C.: Menendez. J. C. Sintet 2000. 205. (e) Groundwater. P. W.: Munawar. M. A. J. Chem. Soc., Perkin Trans. 1 1997. 3381. (f) Panda. M.: Phuan, P.-W; Kozlowski. M. C. J. Org. Chem. 2003, 68, 564. (g) Moreno, T;; Fernandez. M.; de la Cuesta. E.: Avendano. C. Heterocycles 1996 43. 817. (h) Perez. J. M.: LopezAlvarado. P.: Pascual-Alfonso. E.: Avendano. C.: Menendez. J. C. Tetrahedron 2000. 56.4575 . (i) Pita. B.: Masaguer. C. F.: Ravina. E. Tetrahedron Lett. 2000. 41. 9829. (i) Edmondson. S. D: Mastracchio. A.; Parmee, E. R. Org. Lett. $2000,2.1109$.
4. For our recent publications on the synthesis of heterocyclic and carbocyclic compounds from Baylis-Hillmann adducts, see: (a) Kim. J. M.: Lee. K. Y.: Lee. S.-k.: Kim. J. N. Tetrahedron Lett. 2004. 15. 2805. (b) Lee. K. Y.: Kim. J. M.: Kim. J. N. Terrahedront Lett 2003. H. 6737. (c) Kim. J. N.: Kim. J. M.: Lee. K. Y. Synlett 2003, 821. (d) In1. Y. J.: Lee, C. G.: Kim. H. R.: Kim1. J. N. Tetrahedron Lett. 2003, f4. 2987. (e) Lee, K. Y.: Kim, J. M.; Kim. J. N. Symett 2003. 357. (f) Kim. J. N.: Lee. H. J.; Lee, K. Y: Gong. J. H. Swhett 2002. 173. (g) Chung. Y. M.: Gong. J. H:: Kim. T. H.: Kim. J. N. Tetrahedron Letl. 2001. 42. 9023. (h) Lee. K. Y.: Kim. J. M.: Kim. J. N. Tetrahedron 2003. 59. 385.
5. For the synthesis and chemistry of enaminones. see: (a) Elassar, A.-Z. A.: El-Khair. A. A. Teroahedron 2003. 59. 8463. (b) Kim, J.
M.: Na. T. E.: Kim. T. N. Terrahedron Letr. 2003. H. 6317 and further references cited therein.
6. For the aromatization of cycloheseneone system. see: (a) Kotnis. A. S. Tetrahedron Lett. 1990. 31, 481. (b) Horiuchi. C. A.; Fukunishi, H.; Kajita, M.: Yamaquehi. A.; Kiyomiya. H.; Kiji, S. Chem Lett. 1991. 1921. (c) Tamura, Y;, Yoshimoto, Y. Chem. Ind. 1980. 888. (d) Mphahlele. M. J.: Pienaar. A.: Modro. T. A. J. Chem. Soc.. Perkin Trons. 2 1996. 1455. (e) Rac. P. N.: Cessac. J. W.: Kiml. H. K. Steroids 1994. 59. 621. (f) Schoop. A.: Greiving. H.; Gohrt, A. Terahedron Lett. 2000. 41. 1913. (g) Kotnis, A. S. Terahedron Lett. 1991. 32. 3441. (h) Hegde, S. G.; Kassim. A. M.; Ingrum, A. I. Terahedron Lett. 1995. 36, 8395. (i) Hegde, S. G.: Kassim. A. M.: Kennedy. A. I. Tetrahedron 2001. 57. 1689. (j) Yadav. J. S.: Reddy. B. V. S.: Sabitha. G:: Reddy. G. S. K. K. Sy hesis 2000. 1532. (k) Mphahlele. M. J.: Mogamisi. F. K.: Tsanwani, M.: Hlatshwayo, S. M.: Mampa, R. M. J. Chem. Research (S) 1999, 706.
7. Spectroscopic data of $6 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.77(\mathrm{~s} .3 \mathrm{H}) .3 .96$ (d. $J=2.4 \mathrm{~Hz} .2 \mathrm{H}) .6 .33(\mathrm{~d} . J=8.1 \mathrm{~Hz} .1 \mathrm{H}) .6 .48(\mathrm{~d} . J=8.1 \mathrm{~Hz}$. $1 \mathrm{H}) .7 .06(\mathrm{t} . J=8.1 \mathrm{~Hz} .1 \mathrm{H}) .7 .28-7.47(\mathrm{~m} .5 \mathrm{H}) .7 .83(\mathrm{t} . J=2.4$ $\mathrm{Hz} . \mathrm{IH}) .7 .95$ (br s. 1 H): ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 25.19 .55 .73$. 105.05. 107.88. 109.53. 126.48, 128.26, $128.75,128.89,130.49$. 135.73. 136.91, 137.98, 157.23, 165.40.
