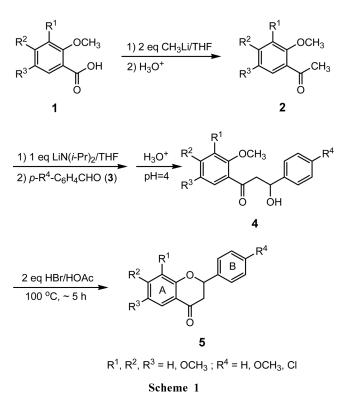
A New Route for the Synthesis of Flavanones from 2-Methoxybenzoic Acids

Jae In Lee* and Mi Gung Jung

Department of Chemistry, College of Natural Science, Duksung Women's University, Seoul 132-714, Korea *E-mail: jilee@duksung.ac.kr Received September 28, 2005

Key Words : Flavanones, 2'-Methoxyacetophenones, 1-(2'-Methoxyphenyl)-1-oxo-propan-3-phenyl-3-ols, Cyclization


The flavanones (2-phenylchroman-4-ones) are mainly found from plants of the family Leguminosae, Compositae, and Moraceae¹ and have attracted a good deal of attention because they possess pharmacological activities, such as antioxidant effect, toxicity to several bacteria, and inhibition of hormone-dependent proliferation of cancer cells.² The most widely used route to flavanones is the oxidative cyclization of 2'-hydroxychalcones which are prepared from 2'-hydroxyacetophenones and benzaldehydes with 2 equiv of base using various reagents.³ The reaction of 2'-hydroxychalcones with palladium(II) acetate,^{4a} Co(salpr) under oxygen atmosphere,^{4b} and potassium ferricyanide using phase transfer catalysis^{4c} leads to the formation of flavanones, but the yields are low to moderate. Although 2'-hydroxychalcones may be also cyclized to flavanones with acidic reagents such as silica gel,5aH2SO4 in methanol,5bCF3COOH,5c and polyphosphoric acid^{5d} or basic reagents such as pyridine^{6a} and DBU in microwave irradiation,^{6b} the most employed methods require for prolonged reaction time at high temperature. Alternatively flavanones are prepared from the oxidative cyclization of cinnamic acids and phenols with polyphosphoric acid⁷ or 2'-hydroxyacetophenones and benzaldehydes with piperidine⁸ in one step, but the yields of the former are very low and the latter are not applicable for flavanones.

However, the preparation of 2'-hydroxychalcones from 2'hydroxyacetophenones and benzaldehydes has underwent troublesomeness because they are always cyclized to flavanones partially during their synthesis.⁹ The synthetic strategy to avoid this undesirable reaction is to prepare β -hydroxyketones as precursors of flavanones from 2'-hydroxyacetophenones and benzaldehydes. For example, the reaction of 2'-hydroxyacetophenones and acetaldehyde with LDA affords 1-(2'-hydroxyphenyl)-1-oxo-butan-3-ols, which are cyclized with HCl in methanol,^{10a} HMPT,^{10b} and H₂SO₄ in acetic acid^{10c} to give the corresponding chroman-4-ones, but there are no reports on the preparation of flavanones with 2substituted phenyl groups. The use of 2'-methoxyacetophenones can also avoid the undesirable cyclization of chalcones to flavanones and furthermore they are generally cheaper than 2'-hydroxyacetophenones. In this paper we report that flavanones can be synthesized via 1-(2'-methoxyphenyl)-1-oxo-propan-3-phenyl-3-ols from 2'-methoxyacetophenones as a new synthetic route.

2'-Methoxyacetophenones 2 were readily prepared by the treatment of 2-methoxybenzoic acids 1 with 2 equiv of methyllithium in THF for 0.5-2 h at -78 °C in 88-93% yields according to our previous method.¹¹ The key intermediates, 1-(2'-methoxyphenyl)-1-oxo-propan-3-phenyl-3-ols 4, as precursors of flavanones 5 were prepared by the treatment of the lithium enolate of 2 with benzaldehydes (Scheme 1). To a yellowish solution of the lithium enolate, generated from 2'-methoxyacetophenones and 1 equiv of LDA in THF for 2 h at -20 °C, were added benzaldehydes at -78 °C. After being stirred for 1 h between -78 °C and -40 °C, the mixture was carefully acidified with 0.1 N-HCl up to pH=4. The mixture was separated by extraction and purified by recrystallization and/or silica gel chromatography in EtOAc/ *n*-hexane to afford 4 in high yields (77-92%). The reaction proceeded well regardless of the kind of substituents (methoxy, chloro) on both 2'-methoxyacetophenones and benzaldehydes without the formation of 2'-methoxychalcones under the present reaction conditions.

The cyclization of 4 proceeded via the dehydration of the β -hydroxyl group and the successive conjugate addition of the phenolic OH which are generated from the cleavage of 2'-methoxy group. The initial reaction of 1-(2'-methoxyphenyl)-1-oxo-propan-3-(4'-chlorophenyl)-3-ol with 2 equiv of 48% HBr in glacial acetic acid afforded the corresponding 2'-methoxychalcone as a major product after 7 h at room temperature together with the corresponding 2'-hydroxychalcone. The reaction of 1-(2'-methoxyphenyl)-1-oxopropan-3-(4'-chlorophenyl)-3-ol with 2 equiv of 48% HBr in methanol also produced only the corresponding 2'methoxychalcone in 95% yield after 4 h at 100 °C. However, the cyclization of 1-(2'-methoxyphenyl)-1-oxo-propan-3-(4'chlorophenyl)-3-ol was successfully accomplished by heating with 2 equiv of 48% HBr in glacial acetic acid and 4'chloroflavanone was obtained in 71% yield. The use of 2 equiv of 47% HI was also effective, but the yield of 4'chloroflavanone was decreased to 58%.

As shown in Table 1, various flavanones were synthesized in high yields by this method. The reaction worked well both for the methoxy substituent (5d-5j) on the A-ring and the methoxy (5c, 5h) or chloro substituent (5b, 5e, 5g, 5j) on the B-ring of 5. During the cyclization 6 or 7-methoxy group of A-ring and 4'-methoxy group of B-ring were not cleaved under the present reaction conditions. Thus, the present Notes

method provides some advantages over the previous methods with respect to (i) the avoidance of isomerization between 2'-methoxychalcones and flavanones using 2'-methoxy protective group (ii) the cheapness of 2'-methoxyacetophenones over 2'-hydroxyacetophenones in general (iii) the use of 1 equiv of LDA for the preparation of 4 (iv) the high yield synthesis of 5.

Experimental Section

Preparation of 1-(2'-methoxyphenyl)-1-oxo-propan-3phenyl-3-ol (General procedure). To a solution of 2'methoxyacetophenone (600.7 mg, 4.0 mmol) in THF (12 mL) was added lithium diisopropylamide (2.0 M, 2.1 mL, 4.2 mmol) at -20 °C under argon atmosphere and stirred for 2 h. The temperature of the mixture was then lowered to -78°C and a solution of benzaldehyde (424.5 mg, 4.0 mmol) in THF (6 mL) was added. After being stirred for 1 h between -78 °C and -40 °C, the mixture was acidified with 0.1 N HCl up to pH 4. After evaporation of THF, the mixture was poured into sat. NH₄Cl (30 mL) and the aqueous phase was extracted with dichloromethane $(3 \times 25 \text{ mL})$. The combined organic phases were dried over MgSO4, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography using 30% EtOAc/n-hexane to give 1-(2'-methoxyphenyl)-1-oxo-propan-3-phenyl-3-ol (922.7)mg, 90%). M.p. 72-73 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.76 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.8$ Hz, 1H), 7.25-7.52 (m, 6H), 6.95-7.04 (m, 2H), 5.92 (d, J = 6.3 Hz, 1H), 3.86 (s, 3H), 3.66 (d, J = 3.0 Hz, 1H), 3.47 (dd, $J_1 = 18.0$ Hz, $J_2 = 2.9$ Hz, 1H), 3.35 (dd, J_1 = 18.0 Hz, J_2 = 9.3 Hz, 1H); FT-IR (KBr) 3479 (OH), 3029, 2942, 1666 (C=O), 1596, 1464, 1245,

Bull. Korean Chem. Soc. 2005, Vol. 26, No. 12 2045

Products	\mathbf{R}^{1}	\mathbb{R}^2	R ³	\mathbb{R}^4	Isolated yield, % ^a
5a	Н	Н	Н	Н	55
5b	Н	Н	Н	Cl	57
5c	Н	Н	Н	OCH_3	38
5d	Н	OCH_3	Н	Н	62
5e	Н	OCH_3	Н	Cl	45
5f	Н	Н	OCH_3	Н	54
5g	Н	Н	OCH_3	Cl	46
5h	Н	Н	OCH_3	OCH_3	47
5i	OCH_3	OCH_3	Н	Н	41
5j	OCH_3	OCH_3	Н	Cl	42

 Table 1. Preparation of Flavanones from 2-Methoxybenzoic Acids

^aOverall yields of three steps from the starting 2-methoxybenzoic acids.

1022, 759, 700 cm⁻¹; Ms m/z (%) 150 (18), 136 (9), 135 (100), 105 (3), 92 (14), 77 (29).

Preparation of flavanone 5a (General procedure). A solution of 1-(2'-methoxyphenyl)-1-oxo-propan-3-phenyl-3ol (768.9 mg, 3.0 mmol) and hydrobromic acid (48 wt. % in H₂O, 679 µL, 6.0 mmol) in glacial acetic acid (9 mL) was heated to 100 °C for 5 h. After evaporation of the solvent, the mixture was poured into sat. NaHCO₃ (30 mL) and the aqueous phase was extracted with dichloromethane (3×20) mL). The combined organic phases were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was recrystallized from 95% n-hexane/EtOAc to give 5a (444.0 mg, 66%) as a colorless solid. M.p. 76-77 °C (lit.^{5a} 76 °C); ¹H NMR (300 MHz, CDCl₃) δ 7.94 (dd, J_1 = 8.1 Hz, J_2 = 1.7 Hz, 1H), 7.37-7.55 (m, 6H), 7.04-7.09 (m, 2H), 5.50 (dd, J₁) = 13.2 Hz, J_2 = 3.0 Hz, 1H), 3.10 (dd, J_1 = 16.9 Hz, J_2 = 13.2 Hz, 1H), 2.90 (dd, $J_1 = 16.9$ Hz, $J_2 = 3.0$ Hz, 1H); FT-IR (KBr) 3005, 2961, 1690 (C=O), 1605, 1463, 1252, 1027, 764 cm⁻¹; ¹³C NMR (75 MHz, CDCl₃) δ 192.4, 162.0, 139.1, 136.6, 129.3, 129.2, 127.5, 126.6, 122.0, 121.3, 118.5, 80.0, 45.1; Ms m/z (%) 224 (M⁺, 100), 223 (96), 147 (59), 120 (97), 105 (39), 92 (52), 77 (17).

4'-Chloroflavanone (5b). M.p. 85 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.93 (dd, J_1 = 7.7 Hz, J_2 = 1.4 Hz, 1H), 7.50-7.53 (m, 1H), 7.38-7.44 (m, 4H), 7.04-7.10 (m, 2H), 5.47 (dd, J_1 = 13.0 Hz, J_2 = 3.2 Hz, 1H), 3.05 (dd, J_1 = 16.9 Hz, J_2 = 13.0 Hz, 1H), 2.88 (dd, J_1 = 16.9 Hz, J_2 = 3.2 Hz, 1H), 1³C NMR (75 MHz, CDCl₃) δ 191.5, 161.3, 137.3, 136.3, 134.6, 129.1, 127.5, 127.1, 121.8, 120.9, 118.1, 78.8, 44.6; FT-IR (KBr) 3033, 2900, 1696 (C=O), 1601, 1471, 1229, 1015, 818 cm⁻¹; Ms *m/z* (%) 260 (M⁺+2, 21), 259 (18), 258 (M⁺, 63), 257 (56), 147 (43), 120 (100), 92 (58), 77 (13).

4'-Methoxyflavanone (5c). M.p. 97 °C (lit.^{4c} 98 °C); ¹H NMR (300 MHz, CDCl₃) δ 7.93 (dd, J_1 = 8.1 Hz, J_2 = 1.8 Hz, 1H), 7.48-7.53 (m, 1H), 7.42 (d, J = 8.6 Hz, 2H), 7.03-7.08 (m, 2H), 6.96 (d, J = 8.6 Hz, 2H), 5.44 (dd, J_1 = 13.2 Hz, J_2 = 2.8 Hz, 1H), 3.84 (s, 3H), 3.12 (dd, J_1 = 16.8 Hz, J_2 = 13.2 Hz, 1H), 2.87 (dd, J_1 = 16.8 Hz, J_2 = 2.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.7, 162.0, 160.4, 136.6, 131.2, 128.1, 127.4, 121.9, 121.3, 118.5, 114.6, 79.8, 55.8, 44.9; FT-IR (KBr) 3084, 2964, 1693 (C=O), 1604, 1463, 1263,

1028, 829 cm⁻¹; Ms m/z (%) 254 (M⁺, 54), 253 (43), 134 (100), 147 (6), 121 (27), 92 (11).

7-Methoxyflavanone (5d). M.p. 91-92 °C (lit.^{4a} 90-91 °C); ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 8.8 Hz, 1H), 7.36-7.50 (m, 5H), 6.62 (dd, J_1 = 8.8 Hz, J_2 = 2.3 Hz, 1H), 6.51 (d, J = 2.3 Hz, 1H), 5.48 (dd, J_1 = 13.2 Hz, J_2 = 3.0 Hz, 1H), 3.84 (s, 3H), 3.05 (dd, J_1 = 16.9 Hz, J_2 = 13.2 Hz, 1H), 2.83 (dd, J_1 = 16.9 Hz, J_2 = 3.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 191.0, 166.6, 163.9, 139.2, 129.3, 129.2, 126.6 (overlapped), 115.2, 110.7, 101.3, 80.4, 56.1, 44.7; FT-IR (KBr) 3065, 2967, 1682 (C=O), 1606, 1442, 1257, 1023, 764, 699 cm⁻¹; Ms *m/z* (%) 254 (M⁺, 45), 253 (37), 147 (7), 134 (100), 121 (26), 92 (11).

4'-Chloro-7-methoxyflavanone (5e). M.p. 120-121 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, J = 8.8 Hz, 1H), 7.37-7.48 (m, 4H), 6.63 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.3$ Hz, 1H), 6.50 (d, J = 2.3 Hz, 1H), 5.45 (dd, $J_1 = 12.9$ Hz, $J_2 = 3.2$ Hz, 1H), 3.85 (s, 3H), 2.99 (dd, $J_1 = 16.8$ Hz, $J_2 = 12.9$ Hz, 1H), 2.82 (dd, $J_1 = 16.8$ Hz, $J_2 = 3.2$ Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 190.5, 166.6, 163.7, 137.7, 135.0, 129.4, 129.2, 127.9, 115.2, 110.8, 101.3, 79.6, 56.1, 44.6; FT-IR (KBr) 3091, 2965, 1680 (C=O), 1608, 1492, 1258, 1057, 830 cm⁻¹; Ms *m/z* (%) 290 (M⁺+2, 33), 288 (M⁺, 100), 177 (64), 150 (86), 122 (38), 107 (20).

6-Methoxyflavanone (5f). M.p. 141-142 °C (lit.^{4a} 140-142 °C); ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.51 (m, 5H), 7.36 (d, *J* = 3.1 Hz, 1H), 7.13 (dd, *J*₁ = 9.0 Hz, *J*₂ = 3.1 Hz, 1H), 7.00 (d, *J* = 9.0 Hz, 1H), 5.45 (dd, *J*₁ = 13.3 Hz, *J*₂ = 3.0 Hz, 1H), 3.82 (s, 3H), 3.08 (dd, *J*₁ = 17.0 Hz, *J*₂ = 13.3 Hz, 1H), 2.88 (dd, *J*₁ = 17.0 Hz, *J*₂ = 3.0 Hz, 1H); 2.88 (dd, *J*₁ = 17.0 Hz, *J*₂ = 3.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.5, 156.7, 154.6, 139.2, 129.2, 129.1, 126.5, 125.8, 121.2, 119.8, 107.7, 80.1, 56.2, 45.0; FT-IR (KBr) 3034, 2959, 1673 (C=O), 1615, 1484, 1460, 1283, 1034, 769, 697 cm⁻¹; Ms *m/z* (%) 254 (M⁺, 62), 253 (13), 177 (15), 150 (100), 135 (10), 107 (18).

4'-Chloro-6-methoxyflavanone (5g). M.p. 115-116 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.44 (m, 4H), 7.37 (d, J= 3.2 Hz, 1H), 7.15 (dd, J_1 = 9.0 Hz, J_2 = 3.2 Hz, 1H), 7.01 (d, J = 9.0 Hz, 1H), 5.44 (dd, J_1 = 13.0 Hz, J_2 = 3.2 Hz, 1H), 3.84 (s, 3H), 3.04 (dd, J_1 = 16.9 Hz, J_2 = 13.0 Hz, 1H), 2.88 (dd, J_1 = 16.9 Hz, J_2 = 3.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.0, 156.4, 154.7, 137.8, 134.9, 129.4, 127.9, 125.9, 121.1, 119.8, 107.8, 79.3, 56.2, 44.9; FT-IR (KBr) 3070, 2996, 1685 (C=O), 1617, 1487, 1281, 1063, 826 cm⁻¹; Ms m/z (%) 290 (M⁺+2, 13), 288 (M⁺, 37), 177 (6), 150 (100), 135 (8), 107 (15).

4',6-Dimethoxyflavanone (5h). M.p. 157-158 °C (lit.⁴a 159-160 °C); ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, J = 8.7 Hz, 2H), 7.35 (d, J = 3.2 Hz, 1H), 7.12 (dd, $J_1 = 9.0$ Hz, $J_2 = 3.2$ Hz, 1H), 6.97 (d, J = 9.0 Hz, 1H), 6.96 (d, J = 8.7 Hz, 2H), 5.39 (dd, $J_1 = 13.3$ Hz, $J_2 = 2.9$ Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.09 (d, $J_1 = 16.9$ Hz, $J_2 = 13.3$ Hz, 1H), 2.85 (dd, $J_1 = 16.9$ Hz, $J_2 = 2.9$ Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.3, 159.9, 156.4, 154.2, 130.9, 127.7, 125.4, 120.7, 119.4, 114.2, 107.3, 79.5, 55.8, 55.4, 44.4; FT-IR (KBr) 3004, 2969, 1682 (C=O), 1612, 1486, 1276, 1027, 826 cm⁻¹; Ms *m/z* (%) 284 (M⁺, 83), 150 (86), 139 (19), 134

(100), 107 (17).

7,8-Dimethoxyflavanone (5i). M.p. 114 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.72 (d, J = 8.9 Hz, 1H), 7.38-7.52 (m, 5H), 6.68 (d, J = 8.9 Hz, 1H), 5.52 (dd, J_1 = 12.4 Hz, J_2 = 3.3 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 3.05 (dd, J_1 = 16.9 Hz, J_2 = 12.4 Hz, 1H), 2.90 (dd, J_1 = 16.9 Hz, J_2 = 3.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 191.3, 159.2, 155.8, 139.3, 137.4, 129.2, 129.0, 126.4, 123.3, 116.6, 106.1, 80.3, 61.5, 56.7, 44.8; FT-IR (KBr) 3065, 2969, 1685 (C=O), 1598, 1451, 1286, 1089, 763, 700 cm⁻¹; Ms *m/z* (%) 284 (M⁺, 100), 207 (18), 180 (43), 152 (79), 151 (24).

4'-Chloro-7,8-dimethoxyflavanone (5j). M.p. 115-116 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, J = 8.9 Hz, 1H), 7.38-7.46 (m, 4H), 6.68 (d, J = 8.9 Hz, 1H), 5.50 (dd, $J_1 = 12.0$ Hz, $J_2 = 3.6$ Hz, 1H), 3.94 (s, 3H), 3.87 (s, 3H), 3.00 (dd, $J_1 =$ 16.7 Hz, $J_2 = 12.0$ Hz, 1H), 2.88 (dd, $J_1 = 16.7$ Hz, $J_2 = 3.6$ Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 190.5, 158.9, 155.1, 137.4, 137.0, 134.5, 129.0, 127.5, 123.0, 116.1, 105.9, 79.1, 61.1, 56.3, 44.3; FT-IR (KBr) 2936, 1684 (C=O), 1598, 1453, 1287, 1088, 802 cm⁻¹; Ms *m/z* (%) 320 (M⁺+2, 24), 318 (M⁺, 73), 207 (16), 180 (73), 152 (100), 151 (34), 137 (35).

Acknowledgment. This work was supported by the Korea Research Foundation Grant funded by the Korea Government (MOEHRD) (R06-2004-004-01001-0).

References

- (a) Harborne, J. B. *The Flavonoids*; Chapman & Hall: London, U. K., 1994; p 406. (b) Harborne, J. B.; Williams, C. A. *Nat. Prod. Rep.* 2001, *18*, 310.
- (a) Nijveldt, R. J.; Nood, E.; Hoorn, D.; Boelens, P. G.; Norren, K.; Leeuwen, P. Am. J. Clin. Nutr. 2001, 74, 418. (b) Middleton, E.; Kandaswami, C. Food Technol. 1994, 48, 115. (c) Heim, K. E.; Tagliaferro, A. R.; Bobilya, D. J. J. Nutr. Biochem. 2002, 13, 572.
- (a) Bohm, B. A. *Introduction to Flavonoids*; Harwood Academic Publishers: Amsterdam, Netherlands, 1998; p 243. (b) Harborne, J. B. *The Flavonoids*; Chapman & Hall: London, U. K., 1994; p 427.
- (a) Kasahara, A.; Izumi, T.; Ooshima, M. Bull. Chem. Soc. Jpn. 1974, 47, 2526. (b) Maruyama, K.; Tamanaka, K.; Nishinaga, A. Tetrahedron Lett. 1989, 30, 4145. (c) Makrandi, J. K.; Bala, S. Syn. Comm. 2000, 30, 3555.
- (a) Sangwan, N. K.; Varma, B. S.; Dhindsa, K. S. Chem. and Ind. 1984, 271. (b) Babber, S.; Chandra, S.; Aggarwal, A. K. Indian J. Chem. 1987, 26B, 797. (c) Chaturvedi, R.; Patil, P. N.; Mulchandani, N. B. *ibid.* 1992, 31B, 340. (d) Paquette, L. A. Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: New York, U. S. A., 1995; p 4172.
- (a) Dutta, C. P.; Roy, L. P. K. *Indian J. Chem.* **1975**, *13*, 425. (b) Patonay, T.; Varma, R. S.; Vass, A.; Levai, A.; Dudas, J. *Tetrahedron Lett.* **2001**, *42*, 1403.
- 7. Talapatra, B.; Deb, T.; Talapatra, S. Indian J. Chem. **1986**, 25B, 1122.
- (a) Tsukayama, M.; Horie, T.; Iguchi, Y.; Nakayama, M. Chem. Pharm. Bull. 1988, 36, 592. (b) Kabbe, H. J. Synthesis 1978, 886.
- 9. (a) Hoshino, Y.; Takeno, N. *Bull. Chem. Soc. Jpn.* **1986**, *59*, 1903.
 (b) Alcantara, A. R.; Marinas, J. M.; Sinisterra, J. V. *Tetrahedron Lett.* **1987**, *28*, 1515.
- (a) Banerji, A.; Goomer, N. C.; Kalena, G. P. Syn. Comm. 1980, 10, 851. (b) Banerji, A.; Kalena, G. P. *ibid.* 1989, 19, 159. (c) Kelly, S. E.; Vanderplas, B. C. J. Org. Chem. 1991, 56, 1325.
- 11. Lee, J. I.; Son, H. S.; Jung, M. G. Bull. Korean Chem. Soc. 2005, 26, 1461.