DOI QR코드

DOI QR Code

Cr(III)-Tetraaza Macrocyclic Complexes Containing Auxiliary Ligands (Part III); Synthesis and Characterization of Cr(III)-Isothiocyanato, -Azido and -Chloroacetato Macrocyclic Complexes

  • Byun, Jong-Chul (Department of Chemistry, Research Institute for Basic Sciences, Cheju National University) ;
  • Han, Chung-Hun (Department of Chemistry, Research Institute for Basic Sciences, Cheju National University) ;
  • Park, Yu-Chul (Department of Chemistry, Kyungpook National University)
  • Published : 2005.07.20

Abstract

The reaction of cis-[Cr([14]-decane)($OH_2)_2]^+$ ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) with auxiliary ligands {$L_a$ = isothiocyanate ($NCS^-$), azide ($N3^-$) or chloroacetate(caa)} leads to a new cis-[Cr([14]-decane)($NCS)_2]ClO_4{\cdot}H_2O$ (1), cis-[Cr([14]-decane)($N_3)_2]ClO_4$ (2) or cis-[Cr([14]-decane)($caa)_2]ClO_4$ (3). These complexes have been characterized by a combination of elemental analysis, conductivity, IR and Vis spectroscopy, mass spectrometry, and X-ray crystallography. Analysis of the crystal structure of cis-[Cr([14]-decane)($NCS)_2]ClO_4{\cdot}H_2O$ reveals that central chromium(III) has a distorted octahedral coordination environment and two $NCS^-$anions are bonded to the chromium(III) ion via the Ndonor atom in the cis positions. The angle $N_{axial}-Cr-N_{axial}$ deviates by 13$^{\circ}$ from the ideal value of 180$^{\circ}$ for a perfect octahedron. The bond angle N-Cr-N between the Cr(III) ion and the two nitrogen atoms of the isothiocyanate ligands is close to 90$^{\circ}$. The bond lengths of Cr-N between the chromium and $NCS^-$groups are 1.964(5) and 2.000(5) $\AA$. They are shorter than those between chromium and nitrogen atoms of the macrocycle. The IR spectra of 1, 2 and 3 display bands at 2073, 1344 and 1684 $cm^{-1}$ attributed to the $NCS^-$, ${N_3}^-$ and caa groups stretching vibrations, respectively.

Keywords

References

  1. Dooley, D. M. Life Chem. Rep. 1987, 5, 91
  2. Dooley, D. M.; Cote, C. E. Inorg. Chem. 1985, 24, 3996 https://doi.org/10.1021/ic00218a007
  3. Dooley, D. M.; McGuirl, M. A. Inorg. Chem. 1986, 25, 1261 https://doi.org/10.1021/ic00228a038
  4. Bereman, R. D.; Ettinger, M. J.; Kosman, D, J.; Kurland, R. J. Adv. Chem. Ser. 1977, 162, 263 https://doi.org/10.1021/ba-1977-0162.ch015
  5. Spira-Solomon, D. J.; Solomon, E. I. J. Am. Chem. Soc. 1987, 109, 6421 https://doi.org/10.1021/ja00255a031
  6. Casella, L.; Gullotti, M.; Pallenza, G.; Pintar, A.; Marchesini, A. Biochem. J. 1988, 251, 441
  7. Casella, L.; Gullotti, M.; Pallanza, G..; Buga, M. Biol. Metals 1990, 3, 137 https://doi.org/10.1007/BF01179523
  8. Casella, L.; Gullotti, M.; Pallenza, G.; Buga, M. Inorg. Chem. 1991, 30, 221 https://doi.org/10.1021/ic00002a016
  9. Goher, M. A. S.; Al-Shatti, L. A.; Mautner, F. A. Polyhedron 1997, 16, 889 https://doi.org/10.1016/S0277-5387(96)00371-3
  10. Kabesova, M.; Boca, R.; Melnik, M.; Valigura, D.; Dunaj, J. M. Cood. Chem. Rev. 1995, 140, 115 https://doi.org/10.1016/0010-8545(94)01121-Q
  11. Gorji, A.; Mahmoudkhani, A. H.; Amirnasr, M. Inorg. Chim. Acta 2001, 315, 133 https://doi.org/10.1016/S0020-1693(01)00316-4
  12. Bernhardt, P. V.; Sharpe, P. C. Inorg. Chem. 1998, 37, 1629 https://doi.org/10.1021/ic971020d
  13. Bernhardt, P. V.; Byriel, K. A.; Kennard, C. H. L.; Sharpe, P. C. J. Chem. Soc. Dalton Trans. 1996, 145
  14. Bernhardt, P. V.; Bramely, R.; Engelhardt, L. M.; Harrowfield, J. M.; Hockless, D. C.; Krausz, E. R.; Morgan, T.; Sargeson, A. M.; Sketon, B. W.; White, A. H. Inorg. Chem. 1995, 34, 3589 https://doi.org/10.1021/ic00118a005
  15. Bernhardt, P. V. Inorg. Chem. 1999, 38, 3481 https://doi.org/10.1021/ic990074f
  16. Martin, J. W.; Franklin, J.; Solomon, K. R. Environ. Sci. Techol. 2000, 43, 274
  17. Grodzicki, A.; Szlyk, E.; Muziol, T. Polyhedron 1998, 17, 1 https://doi.org/10.1016/S0277-5387(97)00309-4
  18. Huskens, J.; Bekkun, H. V.; Choppin, G. R. Inorg. Chem. Acta 1996, 245, 51 https://doi.org/10.1016/0020-1693(95)04805-7
  19. House, D. A.; Hay, R. W.; Ali, M. A. Inorg. Chim. Acta 1983, 72, 239 https://doi.org/10.1016/S0020-1693(00)81726-0
  20. Watson, A.; House, D. A. Inorg. Chim. Acta 1985, 97, L45 https://doi.org/10.1016/S0020-1693(00)86570-6
  21. Choi, J. H. Spectrochim. Acta Part A 2000, 56, 1653 https://doi.org/10.1016/S1386-1425(00)00221-3
  22. Eriksen, J.; Mönsted, L.; Mönsted, O. Inorg. Chim. Acta 2002, 337, 143 https://doi.org/10.1016/S0020-1693(02)00996-9
  23. Byun, J. C.; Han, C. H. Bull. Korean Chem. Soc. 2004, 25, 977 https://doi.org/10.5012/bkcs.2004.25.7.977
  24. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467
  25. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures; University of Göttingen: Germany, 1997
  26. Eriksen, J.; Mönsted, O. Acta Chem. Scand. 1983, A37, 579
  27. Ferguson, J.; Tobe, M. L. Inorg. Chim. Acta 1970, 4, 109 https://doi.org/10.1016/S0020-1693(00)93250-X
  28. Kane-Maguire, N. A. P.; Kevin, C. W.; David, B. M. Inorg. Chem. 1985, 24, 597 https://doi.org/10.1021/ic00198a033
  29. Harada, R.; Marsuda, Y.; Kojima, T. Inorg. Chim. Acta 2005, 358, 2489 https://doi.org/10.1016/j.ica.2005.01.020
  30. Malcoim, A. D. L.; Xianhui, B.; Peter, C. F. Inorg. Chim. Acta 2000, 300-302, 944
  31. Monfort, M.; Ribas, J.; Solans, X. Inorg. Chem. 1994, 33, 4271 https://doi.org/10.1021/ic00097a013
  32. Bosnich, B.; Poon, C. K.; Tobe, M. L. Inorg. Chem. 1965, 4, 1102 https://doi.org/10.1021/ic50030a003
  33. Felix, V.; Santos, T. M.; Calhorda, M. J. Inorg. Chim. Acta 2003, 356, 335 https://doi.org/10.1016/S0020-1693(03)00372-4
  34. Choi, J. H.; Suzuki, T.; Subhan, M. A.; Kaizaki, S.; Park, Y. C. Acta Cryst. 2002, C58, m409
  35. Choi, J. H.; Suzuki, T.; Kaizaki, S. Acta Cryst. 2002, C58, m539
  36. House, D. A.; Steel, P. J. Inorg. Chim. Acta 1998, 269, 229 https://doi.org/10.1016/S0020-1693(97)05798-8
  37. Hodgson, D. J.; Pedersen, E.; Toftlund, H.; Weiss, C. Inorg. Chim. Acta 1986, 120, 177 https://doi.org/10.1016/S0020-1693(00)86106-X
  38. Anna, S.; Bohdan, K. D.; Jerzy, M. Inorg. Chim. Acta 2002, 336, 65 https://doi.org/10.1016/S0020-1693(02)00879-4
  39. Shen, X.; Sakata, K.; Hashimoto, M. Polyhedron 2002, 21, 969 https://doi.org/10.1016/S0277-5387(02)00917-8
  40. Glidewell, C.; Gregson, R. M.; Lough, A. J. Acta Cryst. 2000, C56, 174
  41. Zakaria, C. M.; Ferguson, G.; Glidewell, C. Acta Cryst. 2001, C57, 683
  42. Kim, J. C.; Lough, A. J. Inorg. Chem. Commun. 2002, 5, 616 https://doi.org/10.1016/S1387-7003(02)00506-3
  43. Kim, J. C.; Lough, A. J. Bull. Korean Chem. Soc. 1999, 20, 1241
  44. Braga, D.; Grepioni, F. Acc. Chem. Res. 2000, 33, 601 https://doi.org/10.1021/ar990143u
  45. Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629 https://doi.org/10.1021/cr9900432
  46. Geary, W. J. Coord. Chem. Rev. 1972, 7, 81
  47. El-Shahawi, M. S. Spectrochim. Acta 1995, 51A, 161
  48. Ueki, S.; Yamauchi, J. Inorg. Chim. Acta 2002, 338, 13 https://doi.org/10.1016/S0020-1693(02)00899-X
  49. Choi, J. H.; Linder, R.; Schönherr, T. Chemical Physics 2004, 297, 7 https://doi.org/10.1016/j.chemphys.2003.09.037
  50. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B; John Wiley & Sons: New York, 1997
  51. Chand, B.; Ray, U.; Mostafa, G.; Shinha, C. Polyhedron 2004, 23, 1669 https://doi.org/10.1016/j.poly.2004.02.029
  52. Goher, M. A. S.; Coll, C. Chem. Commun. 1977, 42, 1478
  53. Goher, M. A. S.; Al-Shatti, L. A.; Mautner, F. A. Polyhedron 1997, 16, 889 https://doi.org/10.1016/S0277-5387(96)00371-3
  54. Meyer, K.; Bendix, J.; Weyhermuller, T.; Weighard, K. J. Am. Chem. Soc. 1998, 120, 7260 https://doi.org/10.1021/ja980686j
  55. Deacon, G. B.; Philips, R. J. Coord. Chem. Rev. 1980, 33, 227 https://doi.org/10.1016/S0010-8545(00)80455-5
  56. Tyagi, A. S.; Srivastava, C. P. J. Indian Chem. Soc. 1982, 59, 823
  57. Grodzicki, A.; Szlyk, E.; Wojtczak, A.; Muziol, T. Polyhedron 1998, 17, 1 https://doi.org/10.1016/S0277-5387(97)00309-4
  58. Kahwa, I. A.; Selbin, J. Inorg. Chim. Acta 1986, 118, 179 https://doi.org/10.1016/S0020-1693(00)81385-7
  59. Aruna, V. A. J.; Alexander, V. Inorg. Chim. Acta 1996, 249, 93 https://doi.org/10.1016/0020-1693(96)05084-0
  60. Qin, B.; Lin, J.; Ren, H.; Xue, Y. Spectrochim. Acta, Part A 2005, 61, 717 https://doi.org/10.1016/j.saa.2004.04.030

Cited by

  1. Synthesis and Characterization of Oxa-azamacrocyclic Dinuclear Cu(II) Complex Containing Aqua Ligands vol.27, pp.3, 2005, https://doi.org/10.5012/bkcs.2006.27.3.435
  2. Synthesis and Characterization of Dinuclear Ni(II) Complexes with Tetraazadiphenol Macrocycle Bearing Cyclohexanes vol.27, pp.11, 2006, https://doi.org/10.5012/bkcs.2006.27.11.1747
  3. Synthesis and crystal structure of a mononuclear Ni(II) complex with tetraazadiphenol macrocycle bearing cyclohexanes vol.10, pp.4, 2007, https://doi.org/10.1016/j.inoche.2007.01.011
  4. Synthesis and Characterization of [CrLCl2]Cl Complexes (where L = S4 Macrocyclic Ligands): A Photoelectron Spectroscopic Study vol.32, pp.5, 2005, https://doi.org/10.14233/ajchem.2020.22479
  5. Advances in coordination chemistry of hexaurea complexes of chromium(III) vol.73, pp.20, 2005, https://doi.org/10.1080/00958972.2020.1836363
  6. Synthesis, crystal structure, and spectroscopic properties of bis(rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)(μ-1,2,3,4-oxalato)dichloridozincate(II)(μ-1,2,3-oxalato)dichrom vol.1221, pp.None, 2005, https://doi.org/10.1016/j.molstruc.2020.128711