DOI QR코드

DOI QR Code

Highly Sensitive Fluorescence Probes for Organic Vapors: On/off and Dual Color Fluorescence Switching

  • An, Byeong-Kwan (Organic Nano-Photonics Lab., School of Materials Science & Engineering, Seoul National University) ;
  • Kwon, Soon-Ki (School of Nano & Advanced Materials and ERI, Gyeongsang National University) ;
  • Park, Soo-Young (Organic Nano-Photonics Lab., School of Materials Science & Engineering, Seoul National University)
  • Published : 2005.10.20

Abstract

High-performance fluorescent probes which exhibit either on/off or dual color fluorescence switching in response to the presence of organic vapors with a rapid response, a high sensitivity and a high-contrast on/off signaling ratio were demonstrated on the basis of the vapor-controlled AIEE phenomenon.

Keywords

References

  1. Prasanna de Silva, A.; Nimal Gunaratne, H. Q.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515 https://doi.org/10.1021/cr960386p
  2. Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem. Rev. 2000, 100, 2595 https://doi.org/10.1021/cr980102w
  3. Oh, D. J.; Han, M. S.; Kim, D. H. Bull. Korean Chem. Soc. 2004, 25, 1495 https://doi.org/10.1007/s11814-008-0246-4
  4. Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R. Nature 1996, 382, 697 https://doi.org/10.1038/382697a0
  5. Walt, D. R.; Dickinson, T.; White, J.; Kauer, J.; Johnson, S.; Engelhardt, H.; Sutter, J. M.; Jurs, P. C. Biosens. Bioelectron. 1998, 13, 695
  6. Albert, K. J.; Walt, D. R. Anal. Chem. 2000, 72, 1947 https://doi.org/10.1021/ac991397w
  7. Buss, C. E.; Mann, K. R. J. Am. Chem. Soc. 2002, 124, 1031 https://doi.org/10.1021/ja011986v
  8. Kato, M.; Omura, A.; Toshikawa, A.; Kishi, S.; Sugimoto, Y. Angew. Chem. Int. Ed. 2002, 41, 3183 https://doi.org/10.1002/1521-3773(20020902)41:17<3183::AID-ANIE3183>3.0.CO;2-A
  9. Fernandez, E. J.; Lopez-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Perez, J.; Laguna, A.; Mohamed, A. A.; Fackler, J. P. J. Am. Chem. Soc. 2003, 125, 2022 https://doi.org/10.1021/ja028734u
  10. Lu, W.; Chan, M. C. W.; Zhu, N.; Che, C.- M.; He, Z.; Wong, K.-Y. Chem. Eur. J. 2003, 9, 6155 https://doi.org/10.1002/chem.200305322
  11. An, B.-K.; Kwon, S.-K.; Jung, S.-D.; Park, S. Y. J. Am. Chem. Soc. 2002, 124, 14410 https://doi.org/10.1021/ja0269082
  12. Allmenningen, A.; Bastiansen, O.; Fernholt, L.; Cyvin, B. N.; Cyvin, S. J.; Samdal, S. J. Mol. Struct. 1985, 128, 59 https://doi.org/10.1016/0022-2860(85)85041-9
  13. Lange, F.; Hohnholz, D.; Leuze, M.; Ryu, H.; Hohloch, M.; Freudenmann, R.; Hanack, M. Synth. Met. 1999, 101, 652 https://doi.org/10.1016/S0379-6779(98)01271-5
  14. Ambrosch-Draxl, C.; Majewski, J. A.; Vogl, P.; Leising, G. Phys. Rev. B 1995, 51, 9668 https://doi.org/10.1103/PhysRevB.51.9668
  15. Bredas, J. L.; Themans, B.; Fripiat, J. G.; Andre, J. M.; Chance, R. R. Phys. Rev. B 1984, 29, 6761 https://doi.org/10.1103/PhysRevB.29.6761
  16. Tian, B.; Zerbi, G.; Mullen, K. J. Chem. Phys. 1991, 95, 3198 https://doi.org/10.1063/1.460876
  17. Woo, H. S.; Lhost, O.; Graham, S. C.; Bradley, D. D. C.; Friend, R. H.; Quattrocchi, C.; Bredas, J. L.; Schenk, R.; Mullen, K. Synth. Met. 1993, 59, 13 https://doi.org/10.1016/0379-6779(93)91153-S
  18. Oelkrug, D.; Tompert, A.; Gierschner, J.; Egelhaaf, H.; Hanack, M.; Hohloch, M.; Steinhuber, E. J. Phys. Chem. B 1998, 102, 1902 https://doi.org/10.1021/jp973225d
  19. An, B.-K.; Lee, D.-S.; Lee, J.-S.; Park, Y.-S.; Song, H.-S.; Park, S. Y. J. Am. Chem. Soc. 2004, 126, 10232 https://doi.org/10.1021/ja046215g
  20. Lim, S.-J.; An, B.-K.; Jung, S.-D.; Chung, M.-A.; Park, S. Y. Angew. Chem. Int. Ed. 2004, 43, 6346 https://doi.org/10.1002/anie.200461172
  21. Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740
  22. Chen, J.; Xie, Z.; Lam, J. W. Y.; Law, C. C. W.; Tang, B. Z. Macromolecules 2003, 36, 1108 https://doi.org/10.1021/ma0213504
  23. Li, S.; He, L.; Xiong, F.; Li, Y.; Yang, G. J. Phys. Chem. B 2004, 108, 10887 https://doi.org/10.1021/jp0488012
  24. Auweter, H.; Haberkorn, H.; Heckmann, W.; Horn, D.; Lüddecke, E.; Rieger, J.; Weiss, H. Angew. Chem. Int. Ed. 1999, 38, 2188 https://doi.org/10.1002/(SICI)1521-3773(19990802)38:15<2188::AID-ANIE2188>3.0.CO;2-#
  25. Elmorsy, S. S.; Pelter, A.; Smith, K. Tetrahedron Lett. 1991, 32, 4175 https://doi.org/10.1016/S0040-4039(00)79896-0

Cited by

  1. Color-Tuned Highly Fluorescent Organic Nanowires/Nanofabrics: Easy Massive Fabrication and Molecular Structural Origin vol.131, pp.11, 2009, https://doi.org/10.1021/ja806162h
  2. Multistimuli Two-Color Luminescence Switching via Different Slip-Stacking of Highly Fluorescent Molecular Sheets vol.132, pp.39, 2010, https://doi.org/10.1021/ja1044665
  3. Attogram Sensing of Trinitrotoluene with a Self-Assembled Molecular Gelator vol.134, pp.10, 2012, https://doi.org/10.1021/ja210728c
  4. Fluorescence quenching and enhancement of vitrifiable oligofluorenes end-capped with tetraphenylethene vol.22, pp.15, 2012, https://doi.org/10.1039/c2jm30261f
  5. π-Conjugated Cyanostilbene Derivatives: A Unique Self-Assembly Motif for Molecular Nanostructures with Enhanced Emission and Transport vol.45, pp.4, 2012, https://doi.org/10.1021/ar2001952
  6. Isomerization of Diphenylstilbene Containing the α-Cyanostilbenic Moiety vol.117, pp.21, 2013, https://doi.org/10.1021/jp401440s
  7. Fluorine interaction controlled AIEE phenomenon in an expanded calixbenzophyrin and its vapoluminescent response: turn on emission with volatile ketones and esters vol.49, pp.22, 2013, https://doi.org/10.1039/c3cc38723b
  8. Role of flexible bulky groups and weak interactions involving halogens in the vapoluminescence of a metal-free dye vol.6, pp.78, 2016, https://doi.org/10.1039/C6RA15966D
  9. Self-Assembled α-Cyanostilbenes for Advanced Functional Materials pp.09359648, 2017, https://doi.org/10.1002/adma.201704161
  10. Laser Spectroscopy for Atmospheric and Environmental Sensing vol.9, pp.12, 2009, https://doi.org/10.3390/s91210447
  11. Non-contact identification and differentiation of illicit drugs using fluorescent films vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-04119-6
  12. Improvement of Luminescence Quantum Efficiency by Intermolecular Interaction vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1807
  13. Nucleoside Recognition by a Fluorescent Macrolactam vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2498
  14. Fluorescence solvato and vapochromism of a dimethylaminostyryl terpyridine derivative vol.187, pp.2, 2005, https://doi.org/10.1016/j.jphotochem.2006.10.017
  15. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  16. Spectroscopic Probing of the Dynamic Self‐Assembly of an Amphiphilic Naphthalene Diimide Exhibiting Reversible Vapochromism vol.17, pp.40, 2005, https://doi.org/10.1002/chem.201101642
  17. Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation vol.2, pp.8, 2005, https://doi.org/10.1039/c3tc32174f
  18. Highly ordered luminescent calix[4]azacrown films showing an emission response selective to volatile tetrahydrofuran vol.2, pp.42, 2005, https://doi.org/10.1039/c4tc01596g
  19. Building Functional Materials via Self-assembly of Calixazacrowns vol.2, pp.1, 2005, https://doi.org/10.1016/j.matpr.2015.04.008