Synthesis and COX Inhibitory Activities of Rutaecarpine Derivatives

Eung Seok Lee,* Seung Ill Kim, Seung Hoo Lee, Tae Cheon Jeong, Tae Chul Moon, Hyeun Wook Chang, and Yurngdong Jahng*

College of Pharmacy, Yeungnam University, Gyongsan 712-749, Korea. *E-mail: ydjahng@yumail.ac.kr Received August 31, 2005

Abstract

A series of substituted rutaecarpines were prepared by employing Fischer indole synthesis as key step and their inhibitory activities on COX-1 and 2 as well as selectivity on COX- 2 were evaluated. The compounds with a methanesulfonyl and a bromo group at C 10 showed promising inhibitory activity $\left(\mathrm{IC}_{50}=0.27,0.35 \mu \mathrm{M}\right.$, respectively) with selectivity.

Key Words : Rutaecarpine, COX-2 inhibitor, Antiinflammatory activity, Indoloquinazoline alkaloid

Introduction

Rutaecarpine is a major indoloquinazoline alkaloid isolated from Rutaceous plants ${ }^{1}$ such as Evodia rutaecarpa and Evodia officinalis, which have long been used for the treatment inflammation-related symptoms in the traditional oriental medicinal practice. ${ }^{2}$ Recent studies revealed that such an anti-inflammatory activity stemmed from its components rutaecarpine (structure 4 in which $\mathrm{R}=\mathrm{H}$), which showed potent and selective inhibitory activity against COX-2. ${ }^{3}$ Addition to anti-inflammatory activity, the vasorelaxing, ${ }^{4}$ analgesic, ${ }^{5}$ antiplatelet, ${ }^{6}$ antianoxic, ${ }^{7}$ and cytotoxic activities ${ }^{8}$ were reported for rutaecarpine. Such intriguing activities led to the development of efficient methods for total synthesis. ${ }^{9}$ The preparation of its derivatives specially on the indole ring, however, is somewhat limited presumably due to the lack of general applicability of the synthetic method. ${ }^{8,10}$
As a part of our interest in safer anti-inflammatory drugs, ${ }^{11}$ we herein described preparation of a variety of rutaecarpine derivatives and their inhibitory activities on COX-1 and 2.

Results and Discussion

Chemistry. The synthesis of rutaecarpine derivatives was straightforward as shown. The prerequisite $6,7,8,9$-tetra-hydro- $11 H$-pyrido[2,1-b]quinazoline-6,11-dione (1) was prepared by previously reported method. ${ }^{9 f}$ The diketone 1 was reacted with a series of substituted phenylhydrazine or its HCl salt to afford the corresponding hydrazones $\mathbf{2}$ in over 67% yields. Most of the cases, the hydrazones were soluble enough to get good ${ }^{1} \mathrm{H}$ NMR spectra in either DMSO- d_{6} or $\mathrm{CD}_{3} \mathrm{OD}$. In some cases of hydrazones, the presence of two isomers through $\mathrm{C}=\mathrm{N}$ bond were observed in ${ }^{1} \mathrm{H}$ NMR spectra, which could be readily assignable due to the proton resonances of N -H's. The resonance of H of Z -isomer's were more deshielded (approximately $\Delta \delta 0.5 \mathrm{ppm}$) by hydrogen bonding to N 1 of the quinazolinone ring to show a singlet in the range of $\delta 14.88-11.52$ in DMSO- d_{6}. These two isomers, however, were not separated but instead subjected to next step in most of the compounds. Fischer's indole synthetic
method was applied to hydrazones 3 afforded the desired derivatives of rutaecarpine (4) series in the yields of 6595\%.

4
This method has advantages that $9-$, $10-$, 11- and $12-$ substituted rutaecarpines can be prepared from three isomeric hydrazines: The 2- and 4 -substituted phenylhydrazines afforded 12 - and 10 -substituted rutaecarpines, respectively, while 3 -substituted phenylhydrazines two regioisomers, 9 - and 11 -substituted. Two regioisomers from 3substituted phenylhydrazines were separable in most of the cases and could be readily assigned by comparing ${ }^{1} \mathrm{H}$ NMR in which 11-substituted isomer showed a doublet for H 12

Table 1. Inhibitory Activities of Rutaecarpine Derivatives on COX

Compound (R)	Inhibitory Activity ${ }^{a}$		Selectivity ${ }^{\text {b }}$	Compound (R)	Inhibitory Activity		Selectivity
	COX-1	COX-2			COX-1	COX-2	
4a (H)	8.7	0.28	31	4da/4dc ${ }^{\text {c }}$	11.6	6.5	2
4ba (9-F)	>50	17.8	-	$\mathbf{4 d b}(10-\mathrm{Br})$	10.6	0.27	39
4bb (10-F)	11.2	2.35	5	4dd($12-\mathrm{Br}$)	16.6	1.25	13
4be (11-F)	32.6	10.2	3	$4 \mathrm{eb}{ }^{d}$	21.6	0.35	62
4bd (12-F)	21.6	5.6	4	$4 \mathrm{ed}^{\text {d }}$	25.6	2.22	12
4ca (9-Cl)	>50	34.6	-	$\mathbf{4 f a} / \mathbf{4 f c ^ { c }}$	>50	>50	-
4cb (10-Cl)	>50	8.2	>6	4fb(10-Me)	>50	23.8	-
4ce (11-Cl)	>50	>50	-	4fd(12-Me)	>50	35.5	-
4 cd (12-Cl)	34.2	8.7	4	NS-398	1.67	<0.002	>8,300

${ }^{a}$ Results were mean values of duplicated experiments and shown as $\mathrm{IC}_{50}(\mu \mathrm{M}) .{ }^{b}$ Values calculated by $\mathrm{IC}_{50}(\mathrm{COX}-1) / \mathrm{IC}_{50}(\mathrm{COX}-2) .{ }^{c} \mathrm{Amixture}$ of 9 - and 11 -isomer. ${ }^{d} 4$ eb $\left(10-\mathrm{CH}_{3} \mathrm{SO}_{2}\right)$, 4ed ($12-\mathrm{CH}_{3} \mathrm{SO}_{2}$).
with characteristic meta coupling constant $(J=2.3 \mathrm{~Hz})$. Most of the rutaecarpine derivatives showed resonances in the range of $\delta 8.18-8.10$ for H 4 , while H 12 resonanced in the range of $\delta 7.73-7.25$. With most electronegative halogen as a substituent, all proton resonances were down-field shifted. The effects were most significant for the resonances of H12 which were 0.50 and 0.25 ppm down-field shifted compared to electron donating CH_{3} and parent rutaecarpine, respectively.

Biology. The compounds prepared were evaluated their inhibitory activities against cyclooxygenase-1 and 2 (COX-1 and COX-2) by employing previously reported method, ${ }^{3}$ and are summarized in Table 1.
Compounds with a Br and $\mathrm{CH}_{3} \mathrm{SO}_{2}$ group at C 10 and C 12 showed similar inhibitory activities on COX-2 comparable to parent rutaecartpine with improved selectivity on COX-2. Compounds with a susbtituent at C 10 or C 12 showed stronger selectivity on COX-2. Compound with a $\mathrm{CH}_{3} \mathrm{SO}_{2}$ group at C 10 showed best selectivity by decreasing activity on COX-1 while 10-bromorutaecarpine compound showed strongest inhibitory activity on COX-2 $\left(\mathrm{IC}_{50}=0.27 \mu \mathrm{M}\right)$.
It is worthy to noting that the introduction of a substituent on benzene ring of $4(3 \mathrm{H})$-quinazolinone moiety resulted in increasing cytotoxcity (not described herein), which does not allow evaluation of inhibitory activity on COX-1 and 2. Studies on cytotoxicity of rutaecarpine derivatives will be due in the near future.
In conclusion, a series of substituted rutaecarpines were prepared by employing Fischer indole synthesis as key step. Inhibitory activities of the compounds on COX-1 and 2 were evaluated. The compounds with a methanesulfonyl and a bromo group at C10 showed promising inhibitory activity ($\mathrm{IC}_{50}=0.27,0.35 \mu \mathrm{M}$, respectively) with selectivity (62 and 35 times more selective on COX-2, respectively).

Experimental Section

Melting points were determined using a Fischer-Jones melting points apparatus and are not corrected. IR spectra were obtained using a Perkin-Elmer 1330 spectrophotometer. NMR spectra were obtained using a Bruker-250
spectrometer 250 MHz for ${ }^{1} \mathrm{H}$ NMR and 62.5 MHz for ${ }^{13} \mathrm{C}$ NMR and are reported as ppm from the internal standard TMS. Chemicals and solvents were commercial reagent grade and used without further purification. Elemental analyses were taken on a Hewlett-Packard Model 185B elemental analyzer. The starting 2- and 4-methanesulfonylphenylhydrazine hydrochlorides were prepared by previously reported method. ${ }^{12}$

(i) Hydrazones

6-(2-Fluorophenylhydrazono)-7,8,9,11-tetrahydropyrido [2,1-b]quinazoline-11-one (3ba). Into a solution of 200 mg (0.93 mmol) of $\mathbf{1}$ in 20 mL of 95% EtOH was added a solution of $163 \mathrm{mg}(0.97 \mathrm{mmol})$ of 2-fluorophenylhydrazine $\cdot \mathrm{HCl}$ in 10 mL of $95 \% \mathrm{EtOH}$. The resulting mixture was stirred for 15 h at room temperature to give $231 \mathrm{mg}(77 \%)$ of pale yellow needles which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: mp 197-198 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.87$ (s, NH), $8.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.46$ (ddd, $J=8.0,6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J$ $=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.81(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=5.9 \mathrm{~Hz}$, 2 H), 2.87 (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.15 (quintet, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$).

6-(3-Fluorophenylhydrazono)-7,8,9,11-tetrahydropyrido [2,1-b]quinazoline-11-one (3bb). The same procedure described above for 3ba with $200 \mathrm{mg}(0.93 \mathrm{mmol})$ of $\mathbf{1}$ and $205 \mathrm{mg}(1.22 \mathrm{mmol})$ of 3-fluorophenylhydrazine $\cdot \mathrm{HCl}$ to afford 287 mg (96%) of pale yellow needles: $\mathrm{mp} 192^{\circ} \mathrm{C}$.

6-(4-Fluorophenylhydrazono)-7,8,9,11-tetrahydropyrido [2,1-b]quinazoline-11-one (3bc). The same procedure described above for $\mathbf{3 b a}$ with $160 \mathrm{mg}(0.75 \mathrm{mmol})$ of $\mathbf{1}$ and $210 \mathrm{mg}(1.25 \mathrm{mmol})$ of 4-fluorophenylhydrazine $\cdot \mathrm{HCl}$ to afford $200 \mathrm{mg}(83 \%)$ of pale yellow needles: $\mathrm{mp} 227^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.68$ (s, NH), 8.31 (dd, $J=7.5$, $0.8 \mathrm{~Hz}, \mathrm{H} 5 / 8), 7.83(\mathrm{td}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.06$ (overlapped $\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.14(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.89$ (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.16 (quintet, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$).

6-(2-Chlorophenylhydrazono)-7,8,9,11-tetrahydropyrido [2,1-b]quinazoline-11-one (3ca). The same procedure described above for 3ba with $210 \mathrm{mg}(0.98 \mathrm{mmol})$ of $\mathbf{1}$ and $180 \mathrm{mg}(1.01 \mathrm{mmol})$ of 2-chlorophenylhydrazine $\cdot \mathrm{HCl}$ to afford $270 \mathrm{mg}(81 \%)$ of pale yellow needles: $\mathrm{mp} 199^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$

NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.68(\mathrm{~s}, \mathrm{NH}), 8.23(\mathrm{dd}, J=7.5$, $0.9 \mathrm{~Hz}, \mathrm{H} 5 / 8), 7.73(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43 (td, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H})$.

6-(3-Chlorophenylhydrazono)-7,8,9,11-tetrahydropyrido [2,1-b]quinazoline-11-one (3cb). The same procedure described above for 3ba with $198 \mathrm{mg}(0.93 \mathrm{mmol})$ of $\mathbf{1}$ and $167 \mathrm{mg}(0.91 \mathrm{mmol})$ of 3-chlorophenylhydrazine $\cdot \mathrm{HCl}$ to afford $272 \mathrm{mg}(88 \%)$ of pale yellow needles: $\mathrm{mp} 194^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.63(\mathrm{~s}, \mathrm{NH}), 8.28(\mathrm{dd}, J=$ $7.5,0.9 \mathrm{~Hz}, \mathrm{H} 5 / 8), 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{td}, J=7.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.90 (overlapped d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 (overlapped $\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $4.12(\mathrm{t}, J=$ $5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H})$.

6-(4-Chlorophenylhydrazono)-7,8,9,11-tetrahydropyrido [2,1-b]quinazoline-11-one (3cc). The same procedure described above for 3ba with $201 \mathrm{mg}(0.94 \mathrm{mmol})$ of $\mathbf{1}$ and $166 \mathrm{mg}(0.90 \mathrm{mmol})$ of 4-chlorophenylhydrazine HCl to afford $146 \mathrm{mg}(48 \%)$ of pale yellow needles: $\mathrm{mp} 184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO- d_{6}) $\delta 11.47$ (s, NH), 8.21-8.17 (m, $2 \mathrm{H}), 7.97(\mathrm{td}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (overlapped d, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (overlapped $\mathrm{t}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=6.3 \mathrm{~Hz}$, 2H), 2.14 ($\mathrm{m}, 2 \mathrm{H}$).

6-(2-Bromophenylhydrazono)-7,8,9,11-tetrahydropyrido [2,1-b]quinazoline-11-one (3da). The same procedure described above for 3ba with $196 \mathrm{mg}(0.91 \mathrm{mmol})$ of $\mathbf{1}$ and 204 mg (0.90 mmol) of 2-bromophenylhydrazine $\cdot \mathrm{HCl}$ to afford $315 \mathrm{mg}(92 \%)$ of pale yellow needles: $\mathrm{mp} 199{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.5(\mathrm{~s}, \mathrm{NH}), 8.31(\mathrm{dd}, J=8.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{td}, J=8.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.33 (td, $J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{td}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~m}$, $2 \mathrm{H})$.

6-(3-Bromophenylhydrazono)-7,8,9,11-tetrahydropyrido [2,1-b]quinazoline-11-one (3db). The same procedure described above for 3ba with $200 \mathrm{mg}(0.93 \mathrm{mmol})$ of $\mathbf{1}$ and $209 \mathrm{mg}(0.92 \mathrm{mmol})$ of 3-bromophenylhydrazine $\cdot \mathrm{HCl}$ to afford $259 \mathrm{mg}(74 \%)$ of pale yellow needles: $\mathrm{mp} 208^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.34$ (s, NH), 8.21 (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, \mathrm{H}), 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.14$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR (62.5 MHz, DMSO- d_{6}) δ 159.06, 151.64, 144.85, 136.40, 131.27, 129.67, 128.02, $127.29,125.74,122.55$ (two C's), 120.77, 117.99 two C's), 114.84, 41.56, 23.52, 18.50.

6-(4-Bromophenylhydrazono)-7,8,9,11-tetrahydropyrido [2,1-b]quinazoline-11-one (3dc). The same procedure described above for 3ba with $200 \mathrm{mg}(0.94 \mathrm{mmol})$ of $\mathbf{1}$ and 209 mg (0.94 mmol) of 4-bromophenylhydrazine $\cdot \mathrm{HCl}$ to afford $314 \mathrm{mg}(88 \%)$ of pale yellow needles: $\mathrm{mp} 186^{\circ} \mathrm{C}$.
6-(4-Methanesulfonylphenylhydrazono)-7,8,9,11-tera-hydropyrido[2,1-b]quinazoline-11-one (3ec). The same procedure described above for 3ba with 400 mg (1.87
mmol) of $\mathbf{1}$ and 403 mg (2.61 mmol) of 4-methanesulfonylphenylhydrazine $\cdot \mathrm{HCl}$ to afford $680 \mathrm{mg}(95 \%)$ of pale yellow needles as a E-isomer (major, 64%): mp $187{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 14.81$ (s, NH), 8.28 (dd, $J=8.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.87-7.75$ (m, 4H) 7.47-7.44 (m, 2H), 7.45 (d, $J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H})$. The mother liquid afforded Z -isomer (minor, 31\%): mp $200{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO- d_{6}) δ 14.88 (s, NH), 8.31 (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.87 (overlapped d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.81 (td, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (overlapped d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $4.14(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.91$ ($\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.21(\mathrm{~m}, 2 \mathrm{H})$.

6-(2-Tolylhydrazono)-7,8,9,11-tetrahydropyrido[2,1-b]-quinazoline-11-one (3fa). The same procedure described above for 3ba with $184 \mathrm{mg}(0.86 \mathrm{mmol})$ of $\mathbf{1}$ and 224 mg (1.37 mmol) of 2-tolylhydrazine $\cdot \mathrm{HCl}$ to afford 249 mg (91\%) of pale yellow needles: $\mathrm{mp} 207-208{ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.26(\mathrm{~s}, \mathrm{NH}), 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, H_{5}), $8.13\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, \mathrm{H}_{8}\right), 7.98\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.68-$ $7.61(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz, DMSO- d_{6}) $\delta 159.03,151.77,140.87,138.16,136.37$, 132.90, 130.00, 129.81 (two C's), 127.74, 127.33, 126.88, 120.17, 117.66, 116.01, 41.52, 23.11, 20.71, 18.43.

6-(3-Tolylhydrazono)-7,8,9,11-tetrahydropyrido[2,1-b]-quinazoline-11-one (3fb). The same procedure described above for 3ba with $150 \mathrm{mg}(0.70 \mathrm{mmol})$ of $\mathbf{1}$ and 157 mg (0.98 mmol) of 3-tolylhydrazine- HCl to afford 194 mg (587) of pale yellow needles: mp 283-286 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) $\delta 14.37(\mathrm{~s}, \mathrm{NH}), 8.17\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 7.89(\mathrm{t}$, $\left.J=7.8 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.70\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, \mathrm{H}_{8}\right), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H})$, 7.20-7.18 (m, 2H), $6.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=5.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.08$ (br. s, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 159.64,152.51$, 143.76, 139.33, 138.64, 137.04, 129.81, 128.48, 127.97 (two C's), 125.16, 120.85, 118.31, 117.19, 114.06, 42.24, 23.93, 22.10, 19.07.

6-(4-Tolylhydrazono)-7,8,9,11-tetrahydropyrido [2,1-b]-quinazoline-11-one (3fc). The same procedure described above for $\mathbf{3} \mathbf{b a}$ with $108 \mathrm{mg}(0.51 \mathrm{mmol})$ of $\mathbf{1}$ and 100 mg (0.62 mmol) of 4-tolylhydrazine HCl to afford 136 mg (84\%) of pale yellow needles: mp 185-186 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.35(\mathrm{~s}, \mathrm{NH}), 8.20(\mathrm{dd}, J=8.3,1.5$ $\mathrm{Hz}, \mathrm{H}_{5}$ and H_{8}), $7.99\left(\mathrm{td}, J=8.3,1.5 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.67-7.57(\mathrm{~m}$, $3 \mathrm{H}), 7.26\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}_{7}\right), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (t, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, 2.14 (br. s, 2 H). ${ }^{13} \mathrm{C}$ NMR (62.5 MHz , DMSO- d_{6}) $\delta 160.63$, $147.95,145.34,142.00,135.07,130.73,127.56,127.33$, 126.51, 126.20, 121.88, 121.17, 111.82, 43.03, 30.87, 20.90, 17.79.

(ii) Substituted Rutaecarpines

12-Fluororutaecarpine (4bd). A mixture of 0.20 g (0.62 mmol) hydrazone 3ba with 5 g of polyphosphoric acid in a heavy-walled beaker was heated at $210{ }^{\circ} \mathrm{C}$ for 3 h . After cooling, the mixture was made basic with $10 \% \mathrm{NaOH}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic
layers were washed water, dried over anhydrous MgSO_{4}. Evaporation of the solvent gave a solid material which was recrystallized from ethyl acetate to provide $\mathbf{4 b d}$ as pale yellow needles ($0.15 \mathrm{~g}, 79 \%$): mp $237{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.23(\mathrm{~s}, \mathrm{~N}-\mathrm{H}), 8.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, \mathrm{H} 1)$, $7.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (overlapped $\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12-7.01 (m, 2H), 4.44 (t, J $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{O}: \mathrm{C}, 70.81$; H, 3.96; N, 13.76. Found: C, 70.78; H, 4.02; N, 13.56.
9-Fluororutaecarpine (4ba) \& 11-Fluororutaecarpine (4bc). The same procedure described above for 4bd was employed with $0.65(2.01 \mathrm{mmol})$ of hydrazone $\mathbf{3 b b}$ to yield $0.56 \mathrm{~g}(92 \%)$ of yellow needles whose ${ }^{1} \mathrm{H}$ NMR spectrum showed presence of two isomers in a ratio of $5.4: 1$. The major component had a characteristic singlet at $\delta 7.73$ for H 12 which confirmed 11-fluororutaecarpine as a major. Repeated recrystallization from EtOAc : $\mathrm{CH}_{3} \mathrm{OH}$ afforded two pure isomers. 9-Fluororutaecarpine (4ba): $\mathrm{mp}>250$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO- d_{6}) $\delta 12.38$ (s, NH), 8.53 (dd, $J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.18 (td, $J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.06 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{td}, J=$ $7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=6.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$. 11-Fluororutaecarpine (4bc): mp $>250{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.28(\mathrm{~s}, \mathrm{NH}), 8.53(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.18(\mathrm{td}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ $(\mathrm{s}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.55(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$.

10-Fluororutaecarpine (4bb). The same procedure described above for $\mathbf{4 b d}$ was employed with $0.10 \mathrm{~g}(0.31$ $\mathrm{mmol})$ of hydrazone 3be to yield $65 \mathrm{mg}(66 \%)$ of white needles after recrystallization from $\mathrm{CH}_{3} \mathrm{CN} . \mathrm{mp} 250{ }^{\circ} \mathrm{C}$ (sublimated). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.08(\mathrm{~s}, \mathrm{NH})$, $8.32\left(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, \mathrm{H}_{4}\right), 7.73\left(\mathrm{td}, J=8.3,1.3 \mathrm{~Hz}, \mathrm{H}_{2}\right)$, $7.67(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (td, $J_{\text {ortho }}=9.0 \mathrm{~Hz},{ }^{3} J_{H-F}=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 (overlapped with $\left.\mathrm{CDCl}_{3}, 1 \mathrm{H}\right), 7.10\left(\mathrm{td}, J_{\text {ortho }}=9.0 \mathrm{~Hz},{ }^{3} J_{H-F}=2.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.44(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO- d_{6}) 12.08 (s, NH), 8.17 (dd, $J=$ $8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{td}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.43$ (m, $3 \mathrm{H}), 7.10\left(\mathrm{td}, J_{\text {ortho }}=9.0 \mathrm{~Hz},{ }^{3} J_{H-F}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.44(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{O}: \mathrm{C}, 70.81$; H, 3.96; N, 13.76. Found: C, 71.07; H, 3.98; N, 13.78.
12-Chlororutaecarpine (4cd). The same procedure described above for $\mathbf{4 b d}$ was employed with $0.72 \mathrm{~g}(2.13$ $\mathrm{mmol})$ of hydrazone 3ca to yield $0.61 \mathrm{~g}(88 \%)$ of white needles. mp $217^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18$ (dd, $J=8.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{td}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{td}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=$ $8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (ddd, $J=8.9,8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.10 (dd, $J=9.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 67.27$; H, 3.76; N, 13.06. Found: C, 67.28; H, 3.82; N, 13.06.

9-Chlororutaecarpine (4ca) and 11-Chlororutaecarpine (4cc). The same procedure described above for $\mathbf{4 b d}$ was employed with $0.27 \mathrm{~g}(0.80 \mathrm{mmol})$ of hydrazone $3 \mathbf{c b}$ to yield $0.17 \mathrm{~g}(67 \%)$ of white needles, whose ${ }^{1} \mathrm{H}$ NMR spectrum showed presence of two isomers in a ratio of $4.5: 5.5$. The major component had a characteristic singlet at $\delta 7.73$ for H12 which confirmed 11-chlororutaecarpine. Repeated recrystallization from EtOAc afforded 9 -isomer as pure one: 9-Chlororutaecarpine: $\mathrm{mp}>250{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, DMSO- d_{6}) $\delta 12.08(\mathrm{~s}, \mathrm{NH}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (ddd, $J=8.3,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ $(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (62.5 MHz, DMSO- d_{6}) δ 160.77, 147.42, 145.20, 137.18, 134.71, 128.81, 126.82, 126.75, 126.46, 126.10, 124.91, 124.53, 121.02, $119.45,117.53,114.33,40.98$, 18.99. 11-Chlororutaecarpine: $\mathrm{mp}>250^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.08(\mathrm{~s}, \mathrm{NH}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81(\mathrm{td}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43$ (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.16$ (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$.
$\mathbf{1 0 - C h l o r o r u t a e c a r p i n e ~ (4 c b) . ~ T h e ~ s a m e ~ p r o c e d u r e ~}$ described above for $\mathbf{4 b d}$ was employed with $0.68 \mathrm{~g}(2.01$ mmol) of hydrazone 3cd to yield $0.46 \mathrm{~g}(71 \%)$ of white needles: mp $>250{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) δ 12.07 (s, NH), 8.17 (dd, $1 \mathrm{H}, J=7.9,1.0 \mathrm{~Hz}$), 7.83 (td, $1 \mathrm{H}, J$ $=7.5,1.5 \mathrm{~Hz}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.49$ (ddd, $1 \mathrm{H}, J=8.0,7.6,0.8 \mathrm{~Hz}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.48-$ $4.41(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz , DMSO- $\left.d_{6}\right) \delta 160.74,147.40,144.97,135.75,134.65$, 128.84, 127.12, 126.93, 126.75, 126.49, 124.59, 121.00 (two C's), 119.46, 117.17, 40.81, 19.14. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 67.27 ; \mathrm{H}, 3.76 ; \mathrm{N}, 13.06$. Found: C, 67.32; H, 3.78; N, 12.98.

12-Bromorutaecarpine (4dd). The same procedure described above for 4bd was employed with $1.29 \mathrm{~g}(3.37$ $\mathrm{mmol})$ of hydrazone 3da to yield $801 \mathrm{mg}(65 \%)$ of white needles: mp $>250{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) δ 12.08 (s, NH), $8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 1 H), 7.68 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.62 (overlapped d, $J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.16(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz, DMSO- d_{6}) $\delta 160.76,147.44,145.18,139.45,134.71$, 128.16, 126.82, 126.71, 126.43, 124.15, 123.00, 122.01, 121.00, 118.15, 117.71, 115.15, 40.98, 18.99. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}: \mathrm{C}, 59.04 ; \mathrm{H}, 3.30 ; \mathrm{N}, 11.47$. Found: C, 59.08; H, 3.42; N, 12.06.

9-Bromoprutaecarpine (4da) and 11-Bromorutaecarpine (4dc). The same procedure described above for 4bd was employed with $183 \mathrm{mg}(0.48 \mathrm{mmol})$ of hydrazone $\mathbf{3 d b}$ to yield $152 \mathrm{mg}(87 \%)$ of yellow needles. ${ }^{1} \mathrm{H}$ NMR showed two sets of spectrum, which confirmed the presence of two isomers of 9-bromorutaecarpine (4da) and 11-bromorutaecarpine (4dc). The attempts to separate these two isomers were not successful as yet. 9-Bromorutaecarpine: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 12.22(\mathrm{~s}, \mathrm{NH}), 8.14$ (d, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=7.5 .1 .5$
$\mathrm{Hz}, 1 \mathrm{H}$), 7.48 (overlapped d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.41(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.16(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$. 11-Bromorutaecarpine: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.07$ (s, NH), 8.14 (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (s, 1H), $7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{td}, J=8.3,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25(\mathrm{td}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.49 ($\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$).

10-Bromorutaecarpine (4db). The same procedure described above for 4bd was employed with 194 mg (0.51 mmol) of hydrazone 3dc to yield 145 mg (78%) of yellow needles: $\mathrm{mp}>250{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) δ 11.76 (s, NH), 8.15 (dd, $J=8.0,1.3 \mathrm{~Hz}, \mathrm{H}_{4}$), 7.81 (ddd, $J=$ $8.3,7.8,1.6 \mathrm{~Hz}, \mathrm{H}_{3}$), $7.67\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{1}\right), 7.46(\mathrm{td}, J=$ $8.0,1.2 \mathrm{~Hz}, \mathrm{H}_{2}$), $7.42\left(\mathrm{~s}, \mathrm{H}_{9}\right), 7.36\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, \mathrm{H}_{12}\right), 7.09$ (dd, $\left.J=8.5,1.4 \mathrm{~Hz}, \mathrm{H}_{11}\right), 4.43(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}: \mathrm{C}, 59.04$; H , $3.30 ;$ N, 11.47. Found: C, $59.00 ;$ H, 3.32; N, 11.36.

12-Methanesulfonylrutaecarpine (4ed). The same procedure described for $\mathbf{4} \mathbf{b d}$ was employed with 330 mg (0.87 $\mathrm{mmol})$ of 3ea to yield $202 \mathrm{mg}(64 \%)$ of white needles: $\mathrm{mp}>$ $250{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.13(\mathrm{~s}, \mathrm{~N}-\mathrm{H}), 8.26$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H} 1), 7.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.48 (overlapped $\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10-7.05 (m, $2 \mathrm{H}), 4.44(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.21$ (s, 3H). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 62.45 ; \mathrm{H}, 4.14$; N , 11.50. Found: C, 62.42; H, 4.17; N, 11.46.

10-Methanesulfonylrutaecarpine (4eb). The same procedure described above for 3ba with $400 \mathrm{mg}(1.87 \mathrm{mmol})$ of 1 and $403 \mathrm{mg}(2.61 \mathrm{mmol})$ of 2-methanesulfonylphenylhydrazine HCl to afford $680 \mathrm{mg}(95 \%)$ of pale yellow needles which was not characterized but instead subjected to the same procedure described above for $\mathbf{4 b d}$ to yield 368 mg (58%) of white needles. $\mathrm{mp}>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 12.48(\mathrm{~s}, \mathrm{NH}), 8.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, \mathrm{H} 15), 8.14(\mathrm{dd}$, $1 \mathrm{H}, J=8.9,1.1 \mathrm{~Hz}), 7.77(\mathrm{td}, 1 \mathrm{H}, J=8.3,1.3 \mathrm{~Hz}), 7.83(\mathrm{td}$, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}$), $7.75(\mathrm{td}, 1 \mathrm{H}, J=8.0,0.9 \mathrm{~Hz}), 7.68-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.48(\mathrm{td}, 1 \mathrm{H}, J=8.0,0.8 \mathrm{~Hz}), 4.45(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz})$, 3.21 (t, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}$), 3.19 (s, 3 H). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}_{-}, 62.45 ; \mathrm{H}, 4.14 ; \mathrm{N}, 11.50$. Found: C, 62.50 ; H, 4.12; N, 11.56.

12-Methylrutaecarpine (4fd). The same procedure described above for $\mathbf{4 b d}$ with $120 \mathrm{mg}(0.38 \mathrm{mmol})$ of $\mathbf{3 f a}$ to yield $85 \mathrm{mg}(75 \%)$ of white needles. $\mathrm{mp}>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.71$ (s, NH), 8.15 (dd, $1 \mathrm{H}, J=$ $8.0,1.2 \mathrm{~Hz}, \mathrm{H} 4), 7.81(\mathrm{td}, 1 \mathrm{H}, J=6.8,1.2 \mathrm{~Hz}), 7.74(\mathrm{td}, 1 \mathrm{H}$, $J=7.0,0.8 \mathrm{~Hz}$), 7.47 (overlapped td, $2 \mathrm{H}, J=7.0,1.2 \mathrm{~Hz}$), $7.05(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 6.99(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 4.44(\mathrm{t}, 2 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 3.15(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 160.88,147.64,145.55,138.49$, 134.67, 127.43, 126.81, 126.74, 126.20, 126.58, 125.02, $122.43,120.90,120.27,118.94,117.65,40.99,19.23,17.55$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 75.73$; H, 5.02; N, 13.94 . Found: C, 75.69; H, 5.10; N, 14.03.

9-Methylrutaecarpine (4fa) and 11-Methylrutaecarpine ($\mathbf{4 f c}$). The same procedure described above for $\mathbf{4 b d}$ with $120 \mathrm{mg}(0.38 \mathrm{mmol})$ of $\mathbf{3 f b}$ to yield $89 \mathrm{mg}(78 \%)$ of
yellow needles. ${ }^{1} \mathrm{H}$ NMR showed two sets of spectum, which confirmed the presence of two isomers of 9-methylrutaecarpine (4fa) and 11- methylrutaecarpine (4fc) in a ratio of $1: 2$. The attempts to separate these two isomers were not successful as yet. 9-Methylrutaecarpine: ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.83(\mathrm{~s}, \mathrm{NH}), 8.14$ (dd, 1 H , $J=8.0,1.2 \mathrm{~Hz}, \mathrm{H} 4), 7.80(\mathrm{td}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $7.11(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 4.43(\mathrm{t}, 2 \mathrm{H}$, $J=6.9 \mathrm{~Hz}), 3.15(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.61(\mathrm{~s}, 3 \mathrm{H}) .11-$ Methylrutaecarpine: ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 11.74 (s, NH), 8.14 (dd, $1 \mathrm{H}, J=8.0,1.2 \mathrm{~Hz}, \mathrm{H} 4), 7.80(\mathrm{td}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=$ 8.3 Hz), $4.43(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.39(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz})$, 2.41 ($\mathrm{s}, 3 \mathrm{H}$).

10-Methylrutaecarpine (4fb). The same procedure described above for $\mathbf{4} \mathbf{b d}$ with $120 \mathrm{mg}(0.38 \mathrm{mmol})$ of $\mathbf{3 f c}$ to yield $85 \mathrm{mg}(75 \%)$ of white needles: $\mathrm{mp}>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO- d_{6}) $\delta 11.76(\mathrm{~s}, \mathrm{NH}), 8.15(\mathrm{dd}, 1 \mathrm{H}, J=$ $8.0,1.2 \mathrm{~Hz}, \mathrm{H} 4), 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{H}, J=7.7 \mathrm{~Hz})$, 7.46 (td, 1H, $J=8.0,1.2 \mathrm{~Hz}$), 7.41 ($\mathrm{s}, \mathrm{H} 9), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 7.09(\mathrm{dd}, 1 \mathrm{H}, J=8.3,1.4 \mathrm{~Hz}), 4.43(\mathrm{t}, 2 \mathrm{H}, J=6.9$ Hz), $3.15(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz, DMSO- d_{6}) $\delta 160.85,147.63,145.60,137.34,134.67$, 128.64, 127.31, 126.84 ($2 \mathrm{C}^{\prime} \mathrm{s}$), 126.64, 126.16, 125.30, 120.88, 119.46, 117.59, 41.05, 21.38, 19.16. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 75.73 ; \mathrm{H}, 5.02 ; \mathrm{N}, 13.94$. Found: C, $75.71 ; \mathrm{H}$, 5.01; N, 13.93 .

Acknowledgement. Financial support form Korean Research Foundation Grant (KRF-2004-005-E00004) is gratefully acknowledged.

References

1. Yashima, Y.; Kashiwaki, K. J. Pharm. Soc., Jpn. 1915, 35, 1293.
2. (a) Chu, J. H. Science Record (China) 1951, 4, 279 (Chem. Abstr. 1952, 46, 11589b). (b) Li, H. T.; Hong, H.-I. Yao Hseun Pao 1966, 13, 265 (Chem. Abstr. 1966, 65, 3922c).
3. Moon, T. C.; Murakami, M.; Kudo, I.; Son, K. H.; Kim, H. P.; Kang, S. S.; Chang, H. W. Inflamm. Res. 1999, 48, 621.
4. (a) Chiou, W. F.; Chou, C. J.; Liao, J. F.; Sham, A. Y.; Chen, C. F. Eur. J. Pharmacol. 1994, 257, 59. (b) Wang, G. J.; Wu, X. C.; Chen, C. F.; Lin, L. C.; Huang, Y. T.; Shan, J.; Pang, P. K. J. Pharmacol. Exp. Ther. 1999, 289, 1237.
5. Kong, Y. C.; Hu, H. A.; Lau, F. K.; Che, C. T.; Yeng, H. W.; Cheng, S.; Hwang, C. C. Am. J. Chin. Med. 1976, 4, 105.
6. Sheen, W. S.; Tsai, I. L.; Teng, C. M.; Ko, F. N.; Chen, I. S. Planta Med. 1996, 62, 175.
7. Yamahara, J.; Yamada, T.; Kitani, T.; Oh, Y. N.; Fujimura, H. Chem. Pharm. Bull. 1989, 37, 1820.
8. Yang, L.-M.; Chen, C.-F.; Lee, K.-H. Biorg. Med. Chem. Lett. 1995, 5, 465.
9. (a) Yashima, Y.; Manske, R. H. F.; Robinson, R. J. Chem. Soc. 1927, 1708. (b) Schöpf, C. Angew. Chem. 1937, 50, 779. (c) Schöpf, C. Angew. Chem. 1937, 50, 797. (d) Schöpf, C.; Steuer, H. Ann. 1947, 558, 124. (e) Yamazaki, M.; Ikuba, A. Tetrahedron Lett. 1966, 3221. (f) Fitzgerald, J. S.; Johns, S. R.; Lamberton, J. A.; Redcliff, A. H. Aust. J. Chem. 1966, 19, 151. (g) Yamazaki, M.; Ikuta, A.; Mori, T.; Kawana, T. Tetrahedron Lett. 1967, 28,
10. (h) Kametani, T.; Higa, T.; Fukumoto, K.; Koizumi, M. Heterocycles 1976, 4, 23. (i) Kametani, T.; Higa, T.; Loc, C. V.; Ihara, M.; Koizumi, C. V.; Fukumoto, K. J. Am. Chem. Soc. 1976, 98, 6186. (j) Kametani, T.; Loc, C. V.; Higa, T.; Koizumi, M.; Ihara, M.; Fukumoto, M. J. Am. Chem. Soc. 1977, 99, 2306. (k) Möhrle, H.; Kamper, C.; Schmid, R. Arch. Pharm. 1980, 313, 990. (l) Bergman, T. J.; Bergman, S. Heterocycles 1981, 16, 347. (m) Kökösi, J.; Hermecz, I.; Szasz, G.; Meszaros, Z. Tetrahedron Lett. 1981, 22, 4861. (n) Kökösi, J.; Szasz, G.; Hermecz, I. Tetrahedron Lett. 1992, 33, 2995. (o) Eguchi, S.; Takeuchi, H.; Matsushita, Y. Heterocycles 1992, 33, 153. (p) Lee, S. H.; Kim, S. I.; Park, J. G.; Lee, E. S.; Jahng, Y. Heterocycles 2001, 55, 1555. (q) Mohanta, P. K.; Kim, K. Tetrahedron Lett. 2002, 43, 3993. (r)

Lee, E. S.; Park, J. G.; Jahng, Y. Tetrahedron Lett. 2003, 44, 1883. (s) Chavan, S. P.; Sivappa, R. Tetrahedron Lett. 2004, 45, 997. (t) Mhaske, S. B.; Argade, N. P. Tetrahedron 2004, 60, 3417. (u) Harayama, T.; Hori, A.; Servan, G.; Morikami, Y.; Matsumoto, T.; Abe, H.; Takeuchi, Y. Tetrahedron 2004, 60, 10645. (v) For review see: Bergman, J. In Alkaloids: Brossi, A., Ed.; Academic Press: New York, 1985; pp 30-54.
10. Baruah, B.; Dasu, K.; Vaitilingam, B.; Mamnoor, P.; Venkata, P. P.; Rajagopal, S.; Yeleswarapu, K. R. Biorg. Med. Chem. Lett. 2004, 12, 1991.
11. Chang, H. W.; Kim, S. I.; Jung, H.; Jahng, Y. Heterocycles 2003, 60, 1359.
12. v. Konigs, E.; Wylezich, A. J. Prakt. Chem. 1931, 24.

