A Sequential Cyclization Route to Spiroindanyl Heterocycles through Olefin Metathesis and Free Radical Reaction

Hee-Yoon Lee," Deuk Kyu Moon, and Mina Hahn
Center for Molecular Design and Synthesis, Department of Chemistry and School of Molecular Science (BK2I), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea. 'E-mail: Ieehy(okaist.ac.kr Received December 28, 2004

Key Words: Mctathesis, Free radical cyclization, Spiropiperidine

Spiroindanylpiperidine and analogs (1) that serve as crucial parts of biologically active compounds, are members of "privileged structure"] as 1 can be found in ligands for growth hormone secretion, ${ }^{2}$ oxytocin, ${ }^{3}$ sigma receptor ${ }^{4}$ and other G-protein coupled receptor (GPCR)s. ${ }^{5}$ As a part of our program to construct various combinatorial libraties for ligands of GPCRs, ${ }^{6}$ a general synthetic route to 1 and its structural relatives was anticipated to develop for the expansion of the structural diversity of this privileged structure. Though several preparative roules to 1 were reported, structural or positional variation in the construction of spiro-heterocyclic compounds was limited since all the reported synthetic routes to 1 started from 4 -substituted piperidines ${ }^{7}$ or indanone. ${ }^{4}$ Therefore we envisioned a versatile synthetic route to the spiro-heterocyclic compounds from readily available linear compounds.
Our synthetic strategy utilized successive cyclization reactions of linear compounds using olefin metathesis ${ }^{*}$ and Free radical cyelization reaction (Scheme 1). Since the chain length of tethers in 2 can be easily varied the current synthetic route would provide diversity in the construction of spiro-heterocyclic system. The execution of the strategy started with the preparation of 2 as depicted in Scheme 2. Treatment of commercially available alcohol 6 with n-BuLi
generated the corresponding allylic anion. This anion added rapidly to 2 -bromobenzylbromide to produce $7 .{ }^{10}$ Then the tosylate of 7 was reacted with alkyl amine $(n-1,2)$ alter protection of the resulting amine to produce the Bocdialkylamine 2 for the cyclization reactions.

The linear compounds 2 were lirst treated with Grubbs' catalyst ${ }^{11}$ to form the helerocyclic compounds 3 and the result was summarized in Table 1. 2a and 2e underwent cyclization reaction as expected in good yield but the cyclization reaction of $2 b$ did not progress no further than 10% conversion even though the lincar compounds were structurally similar to each other. The low reactivity of $\mathbf{2 b}$ could not be overcome by using stoichiometric amount of the catalyst. Fortunately, the low reactivity of $\mathbf{2 b}$ was circumvented through replacing the Grubbs' catalyst with a more reactive one. ${ }^{17}$ When the $2^{\text {nd }}$ generation Grubbs' catalyst was used, 3b was produced in a good yield though the reactivity was still lower than other linear compounds. While there were many reported examples of RCM to form nitrogen containing heterocyclic compounds, ${ }^{13}$ the cause of reactivity diflerence is not clear yet.

Next, the RCM products were subjected to the $\mathrm{Bu}_{3} \mathrm{SnH}$ mediated free radical cyclization reaction under the standard reaction condition ${ }^{74}$ to produce the spirocyelic compound 4^{14}

Scheme 1. Synthetic analysis.

6
($\mathbf{6} \mathbf{a}: \mathbf{n}=1, \mathbf{6} \mathbf{b}: n=2$)
(7a: $n=1,7 b: n=2$)
(2a: $n=1, m=1$)
(2b: $n=1, m=2$)
(2c: $\mathrm{n}=2, \mathrm{~m}=1$)

Scheme 2. Reagents and conditions: a) n-BuLi, TMED/hexane, $-78^{\circ} \mathrm{C}$ to rt., 12 h ; 2-bromobenzylbromide/THF, $-78^{\circ} \mathrm{C}$ to tt ., 12 h ($7 \mathrm{a}: 25 \%$.

Table 1. Olefin Metathesis reaction of dienes

"Reaclion condition: calalyst ($6 \mathrm{~mol} \%$) $\mathrm{CL} \mathrm{I}_{2} \mathrm{C} \mathrm{I}_{2}(0.01 \mathrm{M})$, rl. I2h. $\left(40{ }^{\circ} \mathrm{C}\right.$. 24h for B) "isolated yield

Table 2. Free radical cyclization reaction

"Reaction condition: Bu 3 Stll (1.2 eq.), AIB.V (cat.)/benzene (0.01 M), $100^{\circ} \mathrm{C}$. "ratio was determined by I IPIC. "isolated y ield. $\left.{ }^{2 i}\right]$: I mixture of isomers.
along with $\mathbf{5}$ as the byproduct (Table 2). Though formation of 5 as the byproduct was expected from the earlier report of hetero-atom substituted spiroindanylpiperidine synthesis through free radical cyclization reaction, ${ }^{7 / 4}$ the ratio or 5 to 4 was larger than a ratio expected from reported cases. While the pyrrolidine $\mathbf{3 a}$ and piperidine $\mathbf{3 b}$ produced $\mathbf{4 a}$ and $\mathbf{4 b}$ as the major product respectively $\mathbf{4 c}$ was the minor product of the cyclization reaction of $3 c$. This reactivity difference between $\mathbf{3 b}$ and 3 c was quite surprising since there was not much structural difference or electronic bias to alter the exoselectivity to the endo-selectivity. The structural identity of 5 was confirmed by comparison of spectral data with reported ones. ${ }^{15}$ Nevertheless, the synthetic route was so straightforward that we were able to prepare all three spiro compounds in one gram quantity.
Since 5 was another "privileged structure", 15u the current methodology could offer not only spiro-N-heterocyclic compounds but also nitrogen containing perhydrophenanthrenes for the construction of diverse combinatorial librarics. This methodology could easily be extended to the synthesis of hetero-atom replaced indanyl spiro compounds and their positional isomers, which will allow us to expand our diversity of $\mathbf{1}$ into similar but different scaffolds of spiro compounds.

Acknowledgments. This work was supported by the Center for Molecular Design \& Synthesis (CMDS).

References

1. (a) Bondensqaard, K.; Ankersen, M.; Thogersen, IL.: llansen, B. S.: Wolff. B. S.; Bywater, R, P. /. Med. Chem 2004, 47, 888, (b) Patchett, A. A.: Vargund, R. P. Am. Rep. Mecl. Chem. 2000, 35, 289.
2. Patehett, A. A.; Vargund, R. P.; Tata, J. R.; Chen, M.-I I.: Barakat, K. J.: Johnson, D. B. R.; Cheng, K.; Chan, W. W.-S.; Butler, B.; Hickey, G.: Jacks, l.; Schleim, K.; Pong, S.-S.: Chaung, L.-Y. P.; Chen, II. Y.: Frazier, E.; Leung, K. II.; Chiu, S.-II. L.; Smith, R. G. Proc: Nettl Accul. Sci. 1995, 92, 7001.
3. I:vans, B. I:.; Leighton, I. I..; Rittle, K. I:.; Gilbert, K. I.; Lundell. G F.; Gould, N. P: IIobls. D. W.; DiPardo, R. M.; Veber, D. F: Pettibone, D. J.; Clineschmidi, B. V.; Anderson, P. S.; Freidinger, R. M. J. Med. Chem. 1992, 35, 3919.
4. (a) Feldman, K. S.; Vidulova, D. B. Fetrethedron Lett. 2004, 45, 5035. (b) Chambers, M. S.; Baker, R.; Billington, D. C.; Knight, A. K.; Middemiss, D. N.; Wong. E. II. F. J. Med. Chem. 1992, 35, 2033.
5. Nargund, R. P.: Van Der Pleog. L. II. I Am. Rep. Med. Chem. 1997, 32, 221.
6. Kang, K. II.: Pae, A. N.; Choi, K. I.; Cho, Y. S.; Chung, B. Y.; I.ee, J. I.,; Jung, S. II.; K'oh, II. Y.; I.ee, II. Y. Tetrahedion Lett. 2001, 42, 1843.
7. (a) Xie, J.-S.; Huang, C. Q.; Fang, Y.-Y.; Zhu, Y.-F. Fetrahedron 2004, 60, 4875. (b) Sakamuri, S.; George, C.; Flippen-Anderson, I.: Kozikowski, A. P. Fetratedon Lett. 2000, 41. 2055. (c) Chen, M1.-H.: Abraham, I. A. Tetrethedron Lett. 1996, 37, 5233. (d) Cheng, C.-Y.; I.iou, J.-P.; I.ee, M.-I. Tetrathetron Lett. 1997, 38, 4571. (e) Cheng, C.-Y.; I Isin. I.-W.; I iou, I.-P. Tetrathedton 1996, 52, 10935 (f) Maligres, P. I..; Houpis, J.; Rossen, K.; Molina, A.: Sager, J.; Upadhyay, V.; Wells, K. M.; Reamer, R. A.; Lynch, J. E.; Askin, D.; Volante, R. P.; Reider, P. J.; Iloughton, P. Tertahedron 1997, 53, 10983-10992. (g) Yoo, B.; Curran, D. P. Bull. Komeom (hemm. Sac. 1996, 17, 1009.
8. (a) Kim, G.; Jeon, S. Y. Butl. Korem Chem. Soc: 2001, 22, 1156. (b) Tmka, 'l. M.; Grubbs, R. II. Ace: Chem Res 2001, 34, 18 and reference therein.
9. Curran, D. P.; Porter, N. E.; Giese, B. Stereochemistry of Radical Reactions; VCH: Weinheim, 1996.
10. I ipshut7, B. II.; Sharma, S.; Dimock, S. II.; Behling, J. R. Synthesis 1992, 191.
11. (irubbs, R. IL., Chang, S. Tetrahedron 1998, 54, 4413.
12. Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. II. Tetrahedron Lett. 1999, 40, 2247.
13. I’hilips, A. J.; Abell, A. D. A/drichmica Acte 1999, 32, 75.
14. 4a: 'II NMR (CDCl $3,400 \mathrm{MtIz}) \delta 7.31-7.16(\mathrm{~m}, 41 \mathrm{I}), 3.66-3.59$ (m. 111), 3.49-3.36(m, 31I), $2.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{II}), 2.15-2.02(\mathrm{~m}$, $311) .1 .94-1.89(\mathrm{~m}, 11 \mathrm{I}), 1.47(\mathrm{~s}, 911) .5 \mathrm{a}:{ }^{1} \mathrm{II} \mathrm{NMR}$ (CDC. $\mathrm{I}_{3}, 400$ MItz) d7.15-7.09 (m, 41[), 3.95-3.81 (m, 1HI), 3.65-3.61 (m, 111), 3.43-3.35 (m, 211), 3.16-3.11 (m, 111), 2.81-2.78 (m, 211), 2.432.42 (m, 111), 1.81-1.65 (m, 211), $1.45(5,911) .4 b:{ }^{\prime} 11$ NMR (CDCl .400 MLIf) $\delta 7.26-7.00(\mathrm{~m}, 41 \mathrm{f}), 4.11$ (b.s, 211), $2.93(\mathrm{t}, j$ $7.3,411), 2.06(\mathrm{t}, J=7.3 \mathrm{llz}, 2 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.52$
 $7.08(\mathrm{~m}, 41 \mathrm{I}), 3.84-3.75(\mathrm{~m}, \mathrm{IH}), 3.15-3.02(\mathrm{~m}, 11 \mathrm{I}), 2.95-2.91(\mathrm{~m}$, 111), 2.87-2.84 (m, 111), 2.18-2.12 (m, 1tI), 2.08-2.02 (m, 111), $1.87-1.80(\mathrm{~m}, 11 \mathrm{l}), 1.69-1.64(\mathrm{~m}, 1 \mathrm{lf}), 1.62-1.60(\mathrm{~m}, 41 \mathrm{l}), 1.48(\mathrm{~s}$,
 $4.05(\mathrm{~m}, 11 \mathrm{I}), 3.81-3.70(\mathrm{~m} .1 \mathrm{IH}), 2.89-2.65(\mathrm{~m}, 41 \mathrm{I}), 2.38-2.21(\mathrm{~m}$. $111), 2.20-2.05(\mathrm{~m}, 11 \mathrm{f}), 1.95-1.80(\mathrm{~m}, \mathrm{If}), 1.78-1.75(\mathrm{~m}, 1 \mathrm{l})$,
 7.15-7.08 (m, 411), 4.08-3.98(m, 21I), 3.10-3.02 (m, 111), 2.872.83 (m, 4II), 1.98-1.94 (m, 3II), 1.70-1.64 (m, 21I), 1.44 (s.911).
15. (a) Russell, M. G. ...; Baker, R.; Billington, D. C.; Knight, A. K.; Middemiss, D. . .; Noble, A. J. J. Med Chem. 1992, 35, 2025. (b) Oppolzer, W. Tetcthedron Lett. 1974, 1001. (c) Giese, B.; Kopping, B.; Gobel, T.: Dickhaut, J.; Thoma, G.; Kulicke, K. J.; Trach, F. Orgs Synth. 1996, $4 \times, 301$.
