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Abstract - A new approach based on vector field clustering for tool path optimization of 5-axis CNC machining is presented 
in this paper, The strategy of the approach is to produce an efficient tool path with respect to the optimal cutting direction 
vector field. The optimal cutting direction maximizes the machining strip width. We use the normalized cut clustering 
technique to partition the vector field into clusters. The spiral and the zigzag patterns are then applied to generate tool path 
on the clusters. The iso-scallop method is used for calculating the tool path. Finally, our numerical examples and real cutting 
experiment show that the tool path generated by the proposed method is more efficient than the tool path generated by the 
traditional iso-parametric method.
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1. Introduction

Nowadays, products used in aerospace, automotive 
and shipbuilding industries are becoming more and 
more specialized and complicated to meet increasing 
demand of customers. The products, composed of various 
kinds of raw material, may include numerous complex 
freeform surfeces for fine features and functional require­
ments. To manufecture those surfaces, 5-axis CNC 
machine has been proven to be the most efficient tool.

Five degrees of freedom (5-axis) are the minimum 
^required to obtain maximum flexibility in to이-work­
piece orientation. This means that the tool of the 
machine and the workpiece can be oriented relative to 
each other under any angle. In theory, the tool tip is 
able to contact with the workpiece at any point without 
changing the current setup status. This not only reduces 
the number of setup times but also increases much 
machining accuracy. Besides, innovations in the fields 
of mechanical engineering and CAD/CAGD/CAM have 
also enhanced the involvement of the machines in 
manufacturing s니ch the products.

Devoted to the development of the applications of 
the machine, there has been a massive research work 
that deals with practical as well as theoretical issues. 
Topics of practical applications that are dealt with 
include the tool path generation, the post processor, the 
error compensation, the cutter selection, etc. In particular, 

the optimization of the tool path needs fiirther researches 
to improve the machining eflficiency and the productivity.

Optimization of a tool path of the 5-axis milling 
machine could be performed with regard to the cutting 
time, the scallop height, adherence to the required 
surface, the surface roughness, the length of the tool 
path, etc. The optimization invokes constraints related 
to the scallop heights, local and global accessibility, the 
machine range, etc. The independent variables characte­
rize the tool positions and orientations, a way the 
orientations are being achieved through the rotations, 
the shape and the size of the tool, etc. Usually the tool 
visits the prescribed positions following the zigzag or 
the spiral pattern. However, the optimization could also 
utilize complicated patterns adapted in such a way that 
a certain cost function is minimized or at least decreased.

Given the general context above we consider an 
optimization with regard to the length of the tool path, 
namely,

minimize(£)
© (1)

subject to
h<h0 (2)

(3) 

where 0 is the tool path represented by a struct나red set 
of the tool positions and tool orientations (the so called 
CL data), h the scallop height and Ao the maximum 
allowed scallop height. The scallop height can be defined 
as the height of material left between two adjacent 
cutter paths. Note that if the adjacent machining strips do 
not overlap, the remaining areas are considered as 
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scallops as well. The first constraint (2) controls the 
scallops and provides that the machining strips cover 
the entire surface. The second constraint (3) requires 
that the error of the linear interpolation s does not 
exceed a prescribed val니e %

The minimization of L is performed in such a way 
that 0 maximizes the width of the machining strip. In 
turn, increasing the machining strip makes it possible 
to cut the surface by traveling along a shorter path.

A variety of methods for 5-axis tool path optimization 
have been introduced in the Literature. The most 
popular are the iso-planar [11, 28, 29], the iso-parametric 
[6, 13, 18, 19] and the iso-scallop approach [10, 24, 26, 
27]. More sophisticated but time consuming techniques 
include the elliptic grid generation method [1, 4], the 
dynamic cutter inclination approach [5, 21], the neural 
network modeling approach [31], the Vbronoi diagram 
technique [32] and space filling curves [33].

The idea to decompose the part surface into sub­
regions having similar characteristics has been initiated 
in [12, 22]. The curvature is used to decompose the 
surface into concave, convex and flat regions.

The potential field approach [9] has been introduced 
to decompose the s니r每ce into sub-regions where the 
zigzag pattern is applied to generate the tool path [9]. 
characterizes every point on the surface by an optimal 
feed direction vector. The vectors constitute a piecewise 
continuous vector field which could be further analyzed. 
There exists a number of ways to define the optimal 
direction, in particular, it can be chosen in such a way 
that it maximizes the width of the machining strip [9, 
15, 24]. The choice of the optimal direction depends on 
the local principal curvatures of the surface and the 
cutter parameters. Furthermore, a tool path along the 
streamlines of the vector field maximizes the machining 
strip and therefore minimizes or at least decreases the 
path length. [9] introduces an “initial” tool path which 
has the largest averaged machining strip. The zigzag 
tool path is constructed by propagating the initial path 
inside the region while it does not s니bstantially deviate 
from the streamlines. Another new initial tool path is 
searched when the ratio between the length of the path 
and the average machining strip is less than a certain 
threshold. However, a complicated surface produces a 
complicated, non uniform vector field. So, such analysis 
may not be accurate from the viewpoint of the global 
optimization since it may be sensitive to local variations 
in the optimization criteria. In that case, not only the 
zigzag pattern should be taken into account b니t also the 
spiral tool path should be considered. Moreover, the 
search for the best initial path constitutes the shortest 
path, which is NP hard problem. Therefore, a more 
systematic approach to the surface partition should be 
proposed

This paper extends the above ideas by introducing a 
new technique to partition the surface into clusters 
having the streamlines of the vector fields similar to the 

conventional zigzag or spiral patterns. The advantage 
of the proposed approach is that within the cluster the 
tool always follows the near optimal direction. Clustering 
provides a better criteria of how the decomposition 
should be performed since it characterizes the subsurface 
in the global sense. Clustering makes it possible not 
only to decompose but to recognize tool path patterns 
s나ch as the zigzag, and the spiral pattern as well. 
Finally, since the vector field is piecewise contin니ous 
the spatial positions of the CC points (cotter contact 
points) in the vector field are calculated in such a way 
that the scallop height constraint is satisfied as well.

The proposed clustering is based on the spectral 
normalized cut method [34, 35] combined with the 
analysis of the streamlines and the identification of 
spiral centers [38, 39, 40] to recognize patterns. The 
iso-scallop method is employed to calculate the final 
tool path.

We also propose a heuristic procedure to connect the 
tool paths from each sub regions into a continuous 
curve without interruptions. However, when the proce- 
d니re is not applicable the tool retractions must be 
included. Finally, we consider clustering with reference 
to the traditional iso-parametric schemes. The numerical 
experiments complemented by the real machining show 
that the proposed procedure is more efficient.

In this paper, the free form part surface, S(%u), is 
assumed to be regular, and its parametric equation is 
represented in NURBS form [17]. The cutter surface I丄 

follows the APT standard [2]. The c니tter parameters R, 
7?2, P\ and 成 are illustrated in Appendix A (Fig. Al).

2. Vector Field of Optimal Cutting Directions

At a given CC point, we can rotate the tool around 
the surfoce normal vector 360° and get an infinite 
ri니mber of cutting directions. Cutting in the different 
directions produces different strip widths because of 
the normal curvature changing aro니nd the CC point 
(except umbilical point). Tn fact, the strip width not 
only depends on the c니tting direction b니t also on the 
cutter parameters and the tool axis inclination. Therefore, 
at the CC point, an optimal cutting direction correspo­
nding to the maximum strip width exits. As for the 
whole surface, a vector field of the optimal cutting 
directions exits obviously.

This section presents the cutting profile and the strip 
width detemination, the local mill-ability, and an 
algorithm for searching the optimal directions.

2.1. Cutting profile and ma이lining strip width
We consider the case of the cutter at a given CC 

point O (Fig. 1), where
• n: the unit normal vector of the part surface;
• f : the unit feed direction vector;
• Os ~ (。, Xs, ys, z$): local part coordinate system; zs 

axis points in the normal vector direction; axis



Chu A M, et al. On 5-Axis Freeform Surface Machining Optimization: Vector Field Clustering Approach 3

S(w,v).

and ys axis point in the maximum and minimum 
principal directions of the part surface, respectively;

• Ot — (O, xf, yt> Zt): local tool coordinate system^ z( 
axis points in the normal vector direction; xt axis 
points in the principal direction which is tangent to 
the cutter s니rf代ce parallel through the CC point; yt 
is determined by the right hand rule;

, a: tilt angle, the angle between the tool axis and n;
• P: roll angle, the angle between and x(\
, 0: cutting direction angle, the angle between f and ys.
We follow Jensen et al. [20] to define the tool 

orientation {a, 0) and the feed direction f.
Recently, several definitions of the (fitting profile 

have been used. The c니tting profile is defined as
• the bottom circle of the flat end cutter [21],
• the projection of the bottom circle onto the normal 

plane (the plane thro니gh the CC point and normal 
to the feed direction) [5, 18],

• the circular arc approximated from the projected 
ellipse [24], or

• the intersection between the cutter surface and the 
normal plane [7].

The last one is flexible when using general APT tool. 
So we use this for fbrm니lating the cutting profile. If we 
denote As for the sitting profile, according to the 
selected definition As is obtained by solving:

®f=0, (4)

where IIS is the parametric equation of the cutter 
surface represented in the coordinate system Os. H is 
transformed from the origin시 parametric equation nc 
[2] to Os through Ot.

The machining strip width Q is determined as the 
distance between two intersection points p\, p2 of the 
cutting profile and the part s니rfWce offset (see Fig. 2). 
The offsetting distance equals to the scallop height 
limit h(). pi and p2 are obtained by solving:

As = S + /20-n (5)

and

Q 티四시 (6)
Solving Eq. (5) requires a scheme for computin응 the 
NURBS offset, such as the one presented by Piegl & 
Tiller [30]. However, to reduce the computational time 
we use the approximation of the surface region 
surrounding the CC point, S': 1/2(长|工$+蚤认)，where
K、and K2 are the maximum and minimum principal 
curvatures of the part surface at the CC point. So Eq. 
(5) is rewritten:

As = S，+ 如彳 (7)

As, S' and h0 are known, so ph p2 are obtained by Eq. 
(7), and l2is obtained by Eq. (6).

2.2. Local mill-ability
The local mill-ability means that there is a neighbor­

hood of the CC point s니ch that the solid bound of the 
cutter and the part surface do not have a point in common 
in this neighborhood except the CC point; and both the 
part and the cutter surfaces do not have second order 
contact at the CC point. So in identifying the optimal 
directions, the local mill-ability must be considered.

By using the Dupin indicatrices of the cutter surface 
and the part surface, Yoon et al. [23] proved that the 
part surface, S, is locally millable by the c니tter surface, 
nc, at a given CC point, if

*i + *2  > K + A?2 (8)
and

(*i  - K、)g -阳)> cos2 供R\ — *2 )(K -爲) (9) 

where,

k\ 슬 (10)

k =________sina______
2 7?|-7?2cos/^+7?2s^ncz 
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k] and k2 are the principal curvatures of the APT cutter 
surface at the CC point. k\ and k2 are defined along yt 
and xh respectively (see Fig. 1). Eq. (10) and Eq. (11) 
are obtained by extending the formulations of the 
principal curvatures of the fillet end cutter presented in 
[23]. Let/； =R2 and» = R - R2 cos丿务 Substit니ting 万 

and力 in Eq. (8), Eq. (9) and then combining them, we 
obtain:

sin。〉

2，기 砂2 
cos "K (12)

仄㈤-&)

Eq. (12) shows that the local mill-ability of a CC point 
relates to the local principal curvatures of the part 
surface, the cutter parameters and the tool orientation. 
Since cos1 2 /3 is always positive, all cutter positions 
are locally mill-able when K】v 0 and no cutter 
position is locally mill-able when K2 > max{k2} = 1/ 
(7?i -R2 cos 屋+ &2)・ The mill-ability g니arantees the 
existence of the neighborhood, but we cannot say 
anything abo니t the neighborhood size only with the 
local geometry.

1 ( I )
1-W

Eq. (13) is obtained from Eq. (12) by setting /?= 0°. 
The roll angle P= 0° means that the right hand side of 
Eq. (12) is maximized. After checking fbr all grid 
points, a tilt angle (x is chosen as:

tx = Max{aj} (14)

This vahie will be used for next steps in determining 
the optimal directions at all grid points.

3. With a= S we rotate the tool around the CC 
point (vary the roll angle p) from -90° to 90° with 
step of 1°. Corresponding to each roll angle /3h we 
change the cutting direction f in such a way that 
the cutting direction angle 0 is varied from -90° 
to 90° with step of 1° also. Corresponding to 爲 

and Ojj, the machining strip width is computed

2.3. Algorithm for seamhing the optimal cutting 
directions

Finding the maximum strip width at a CC point 
leads to a complex problem, since Q depends on 
several factors: the cutting direction, the tool inclination 
and the c나tter parameters. Instead, we propose in this 
section an algorithm for searching /%腿 and the respe­
ctive optimal direction locally. We assume that the 
cutter parameters are pre-selected. As for the cutter 
selection issue the readers can refer to Refs. [6, 8, 2이. 

The algorithm consists of following steps:
1. Generate a grid on the part s니rf衬ce.
2. Check the mill-ability for all grid points by Eq. 

(12), and obtain all tilt angles% at grid point i 
is determined as:

Fig. 3. Example, (a) NURBS surface, (b) Vector field of optimal 
cutting directions.

by Eq. (6). Qmax is then searched among Q. The 
cutting direction vector f(x, y, z) corresponding to 
Qmax is the optimal cutting direction vector.

4. Repeat the step 3 for all grid points we obtain the 
vector field of the optimal feed directions.
We denote the field as: F(x, y, z) = (fa(x, y, z).fy(xs 
y, z),力(x, 乂 z)".

Fig. 3 show a surface and the field F generated with 
fixed cutter parameters (R = 6 mm, R2 = 1 mm, 0、= 
10。,禺=10°).

Remark 1: The grid size reflects the likelihood 
(the similarity) between every two adjacent vectors. 
If the grid size decreases, the density of the field 
will increase and the likelihood will vary smoother. 
Accordingly, the weight matrix of the graph, which is 
set from the field, will contain very 'rich' information 
for clustering process. However, a big number of grid 
points will consume a long computational time. On 
the other hand, if a few grid points are generated, the 
weight matrix could reflect 'poor' information that could 
compact on clustering process though the computational 
time is shorten.

So a reasonable grid size is a compromise between 
the computational time and the effectiveness of the 
clustering process.

In this paper we select the parametric grid size as 
(Aw x Av), which are the parametric increments 
calculated by the iso-parametric method [13]. Aw is 
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determined providing that the tool path flow is selected 
in u direction, and Av is determined providing that the 
tool path flow in v direction.

Av is determined as

A IAv--,
X

where I = 2(h^2Rtooi - Ao))1/2 is the side step, and Sv is 
the total arc length given constant wc, that is the length 
of the curve S(wc, v). Since Sv may vary as the parameter 
value uc changes, the arc length Sv is calculated at 
uc = 0, 0.25, 0.5, 0.75 and 1, respectively. The greatest 
value calculated is chosen as the vahie needed to 
achieve the given scallop height limit or less.

Au is determined in similar way.
In the example above the increments are calculated 

as △卩= 0.0134, and Aw = 0.0281.

3. Vector Field Clustering

As introduced in section 1, the obtained vector field 
needs to be partitioned into infl니ence sub-regions 
(clusters) on which a sin이e tool path pattern (spiral or 
zigzag) can be recognized. The clustering research 
community [36, 37] has offered us several agglomerative 
and divisive algorithms. The algorithm based on the 
graph theory is practically efficient when used for 
image segmentation [34] and vector field clustering 
[35]. Unlike the most commonly used K-means, the 
normalized cut is a non-average technique that avoids 
potential problems caused by the K-means. When 
using K-means, the choice of the n니mber of initial 
clusters (K) is crucial; quite different kinds of clusters 
may emerge when K is changed. Good initialization of 
the cluster centroids (average vectors) may also be 
crucial; some clusters may even be left empty if their 
centroids lie initially far from the distrib나tion of the 
vector data. In particular, the normalized cut can be used 
to extract spiral clusters where the directions of the 
vectors are different, even opposite. The main operation 
of the normalized cut refers to solving a standard 
eigensystem that is not so time consuming compared to 
the other complex clustering methods such as the fuzzy 
clustering, the fuzzy K-means clustering, etc.

The normalized cut techniq니e considers the field F 
needed to be 이니stered as a weighted graph G, where 
the nodes correspond to the vectors and the edges 
(connections) are formed between every pair of nodes. 
The weight on each edge, m勺，is a function of similarity 
between node i and node j. The weights reflect the 
similarity between nodes. The matrix W =的 is called 
the weights matrix. We seek to partition the set of 
nodes (the graph) into disjoint sub-sets (groups) by 
measuring the similarity among nodes. The similarity 
within a sub-set is high and across different sub-sets is 
low. The technique gives a criterion to partition the 
graph into groups Gx and G2 as:

cut(G^G?) cut(GuG7) g"(G，G2)=心크+赤브, (15)

where cw?(Gi,G2) = Z w assoc(G[,G)= X

w/t is total connectionsfrom nodes in G\ to nodes in 
entire G and assoc(G2, G) is defined similarly. Ncut is a 
criterion for measuring the goodness of a graph 
partition. So the problem is finding minimized vahie of 
Ncut. With this definition of disassociation between 
groups, if the cut(G^ G2) minimizes and the assoc(G\, 
G) maximizes, the Ncut value will minimize. This 
minimization problem refers to the Rayleigh quotient, and 
finally to a standard eigensystem [34]:

(「".(C—W'C*z = kz,

N
where 机勺 and C =

丿=i

5 0 ... 0-

0 C*2  - ♦.
0

0 ...0 CN-

(16)

N: total number of vectors.
Constructing the weights matrix W is detailed in 

Appendix B.
丄丄 —1/2 _] /2Furthermore, C , (C-W) C is symmetric positive 

semidefinite since (C 一 W), also called the Laplacian 
matrix, is positive and semidefinite [34]. The real 
solution for the problem is the second smallest eigen­
value. The eigenvector of the second smallest eigenvalue 
is used as indicator to partition the graph. A similarly 
argument can also be made to show that the 
eigenvector with the third smallest eigenvalues is the 
real valued solution that optimally subpartitions the 
first two parts. In fkct, this line of argument can be 
extended to show that one can subdivide the existing 
graph, each time using the eigenvector with the next 
smallest eigenvalue.

In short, following steps are used for clustering:
• Set up the weighted graph G from the vector field F 

(constructing the weights matrix W).

• Solve the standard eigensystem:C-1/2■ (C-W)- C~1/2 
z = Az.

• Use the signs of the components of the second 
smallest eigenvector as the indicators to partition 
the vector data set. Vectors associated with the 
same sign are placed in the same cluster. Calculate 
the value of Ncut by Eq. (15).

• Recursively repartition the segmented parts if Ncut 
is below the pre-specified value.

The partitioning is controlled by the pre-specified value 
of Ncut. However, to improve the quality of a partition we 
introduce a refinement procedure based on the squared 
error criterion. The squared error is defined as:

SE = (fix + (fiy -fiy)2 + -/fe)2, (17)
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where £ = 用丁 ： the original vector located at Xj
= [Xj yj 기丁; and = [f'ix f'iv 쉬丁: the approximated 
vector located at the same point x}. The approximated 
vector is determined by the first order Taylor expansion 
about a point xc:

f「= A(Xi — Xc) + fc, (18)

where located at xc, is a neighbor of fis and A is the 
Jacobian matrix evaluated at 阳(see App. B for details).

There are two neighboring comm니nities of a bordering 
vector (the vector nearest the border between two 
segmented children clusters). One is in the children cluster 
where it is located; the other is in the opposite children 
cluster.

The refinement aims at checking whether the bordering 
vector is more 'similar' to which one of the communities. 
If it is less 'similar5 to the first comm나nity in the 
current cluster, it will be moved to the opposite cluster 
where it is more 'similar5 to the second comm니nity.

After a partition, following steps are executed to 
refine the quality of the two children clusters:

• Each bordering vector 毛 in the first 이uster is 
approximated as f\ by using Eq. (20); where R is 
chosen in the first neighboring community, and A is 
determined by the vectors collected in the first 
community also.

• Evaluate the squared error SEj between f, and by 
using Eq. (19).

• The vector £ now is approximated as f'、； where
is chosen in the second community, and A is 
determined by the vectors collected in the second 
community also.

• Evahaate SE2 between £ and f'、by using Eq. (19).
• If SEi > SE2 the vector & is moved to the second 

cluster.
• Repeat all the steps above until all the bordering 

vectors of the first clusters do not need to move.
The same statement is also applied for the second 

children cluster.

4. Spir이s Detection

The spiral tool path pattern is seldom dealt with in 
the previous work in the literature, even in the researches 
following the idea of the surface decomposition [9, 12, 
22, 25], However, the spiral pattern plays an important 
role in improving the efficiency of the tool path planning 
for complex graces [1, 3, 4].

According to the current techniques of spiral center 
identification of the discrete vector field [38, 39, 40], 
the center of the spiral streamlines pattern is the point 
where the eigensystem of the Jacobian matrix A displays 
one real and one pair of complex-conjugate eigenval니es. 
The real eigenvector points in the direction about 
which the streamlines swirl. When all the clusters are 
determined, we search spiral center for each of the 
clusters as follows:

Fig. 4. Clusters with two spirals.

At every grid points of the concerned cluster the 
matrix A is evaluated locally (see App. B). The center 
of a spiral is the point that satisfies the criteria of one 
real and a pair complex-conjugate eigenval니es. We 
assume that the spiral center is uniq니e; therefore, if the 
cluster contains more than one spiral center, it must be 
partitioned into smaller clusters. However, if there exist 
two adjacent grid points with one real and a pair 
complex-conjugate eigenvalues, we select the point 
nearest to the centroid. Furthermore, if the number of 
vectors in a certain cluster is too small it will join a 
neighboring. Fig. 4 shows an example of vector field 
which is partitioned into clusters and spirals.

5. Implementation and Example

We use the iso-scallop method [10, 24, 26, 27] fbr 
generating tool paths on the separated cl니sters. The iso­
scallop tool path can be defined as a tool path which 
produces a constant scallop height across the machined 
s니而ce [10, 24, 26, 27]. The main advantage of the iso­
scallop method is that the redundant machining produced 
by the conventional method can be avoided. The spiral 
tool paths are generated on the spiral clusters, and the 
zigzag tool paths are generated on the other chisters. 
Machining sequence of the clusters is performed by 
following heuristic: the cluster nearest to the last CC 
point of the prior chaster is the next. This is carried out 
니p to the last cluster. Also notice that, the clustering 
process produces a common border in between every 
two adjacent clusters. The machining boundaries of the 
corresponding s니b-regions are determined based on the 
borders. The machining boundaries are calculated in 
such a way that if the tool cuts along the boundaries of 
two adjacent sub-regions, the scallop height does not 
exceed h0.

We present one numerical example accompanied by
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Table 2. Compansons of the 5-axis CC path lengths calculated 
by the presented method and by the conventional iso-parametric 
method (in both u and v directions). h0 = 0.1 mm.

CC path length (mm) Number of turns

Presented method 18675.45 300

Conventional In u Dir- 20255.37 296
method InvDir 20616.16 152

Zizag4

Fig. 5. CC path.

with the conventional CC path lengths in u and v 
directions, respectively.

Remark 2: As for the spiral cluster, the tool path 
propagates on the cluster area and reaches as near as 
possible to the border. No CC point is located out of 
the border. The common border between two zigzag 
regions is linearized in the parametric domain. The 
cutting border of a zigzag region adjacent to another 
zigzag is determined s니ch that if the tool c니ts along 
two 'parallel' borders of the chisters, the scallop height 
left on the surface m니st satisfy the scallop height 
constraint. The (fitting border of a zigzag region adjacent 
to the existing spiral tool paths is determined using the 
same constraint.

些 
z
 

i

z g2

'

o
、
 
1

Fig. 6. Real cut part.

a corresponding real cutting experiment. The experiment 
is run on MAHO 600e 5-axis CNC machine. The cutter 
is selected with the parameters: R^R2 = 5 mm.。\= 0\ = 
0°. The CC path is shown in Fig. 5; and the real c니t 
part is shown in Fig. 6. Information of the clusters is 
presented in Fig. 4 and Table. 1. Table. 2 shows the 
lengths of the CC paths of the presented method and 
the conventional method. The conventional CC paths 
are calculated in both directions: u and v. Altho니gh the 
presented method produces more turns the CC path 
length is reduced by 7.8% and 9.4%, when compared

6. Conclusion

We have proposed a new method for 5-axis tool path 
optimization by clustering the optimal cutting direction 
vector field. The NURBS surface and the APT tool 
have been considered thoroughly in the optimization. 
By taking foil advantage of the normalized cut clustering 
technique, a more systematic analysis is introduced to 
partition the complex surface into s나b・regions where 
the spiral and the zigzag patterns can be applied to 
generate the nearly optimal tool paths. The combination 
of the spiral and the zigzag patterns produces more 
efiflcient tool path as compared with the traditional iso­
parametric method (Table. 2). The proposed method can 
be 니sed to improve and automate 5-axis sculptured 
surface machining fbr CAD/CAM systems. Analysis of 
more complex critical points such as in potential field 
fl니id flow to derive more complex tool path patterns on 
more complicated surfaces should be the future work.

Table 1. Information of the machining 이 usters

Patterns Clusters Scallop (mm) Number of turns Machining sequence Start point End point
Zigzag \ 1,2,3,4,5 0.1 130 6 Pll P12
SpiralX 6 0.1 0 7 P13 P14
Zigzag2 7 0.1 41 5 P9 P10
Zigzag3 8 0.1 40 4 P7 P8
Spiral! 9 0.1 0 1 Pl P2
Zigzag^ 10 0.1 44 2 P3 IM
Zigzag5 11 0.1 45 3 P5 P6
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Fig. Al. Generalized APT cutter geometry.

Appendix A: APT cutter
Appendix B: Construct the weights matrix of the 

graph G from the vector field F

The weight 印〃 between two nodes i and j (two 
vectors fs = [fix fiy /Z]T and，티而 fjy 农卩 located at x. 
= X y. 기丁 and Xj = [xj yj ZjY respectively) is calculated 
as [35]:

―击听 -dig、
旳= +(1 -p).e ,

where 0<p<l , dist^ = J(x-x^+(y-y^ +(?—勺)~ 

and =J(厶必)'(爲，必)2+(仁相2 . (B.1)

The parameter p is also required to vary between 0 and 
1. A small value of p emphasizes the difference in 
direction and magnitude while a large value of p places 
more weight on distance between vector locations.

To smooth the changing of the desirable weight 
values when the distance between 阳 and 为 does not 
excess a predefined valued r, the vector f, at Xj is 
replaced by an approximated vector 站 is evaluated 
at the same point Xj through the first order Taylor 
expansion about the point %: f「=A(Xj — *)  + The 
matrix A is the Jacobian matrix of the field F(x, y, 
z) = (万(x, y, z), y, z), y, z))T eval니ated at % 
(The tensor of the deformation rate of the field).

The components of A are obtained by solving an over­
determined system of equations. The system of 
equations is formulated by taking the Taylor expansion 
with m neighboring vectors around the vector f、The 
neighboring vectors are denoted by fk located at xk, 
where k = 1, 2,..., m. The Taylor expansion: R = A(x^ — 
X,) + 0

Let = 4 - f) and △左=)頌—xz, so Af^ = A&. This 
expression is 니sed to formulate the over-determined 
system of equation:

r —
AX] 0 0 Ajj 0 0 Az】0 0 。11 △兀

0 A%] 0 0 0 0 Az； 0 시 21 A/.,
0 0 Axt 0 0 0 0 A/lz

시 12
a22

a32

Z&OO 0 0 Az„, 0 0 a3\
成

0 Ax”，0 0 Nym 0 0 Azm 0 a32 My
0 0 Axm 0 0 Aj„, 0 0 Nzm a33

(B.3)
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