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Abstract - Interpreting a natural line drawing as a solid object requires simplifying assumptions in order to make the problem 
more tractable. Unfortunately, some of the assumptions made in the past have overly simplified the problem. Restricting the 
valency of vertices, and in particular allowing only trihedral vertices, distorts the problem, since algorithms which are 
satisfactory for the simplified problem are not satisfactory in the general case. This paper presents a test set of drawings of 
objects with higher-valency vertices. The intention in creating this test set is that it may be used to determine how effective 
various algorithms are in dealing with general (i.e. unrestricted) valency vertices.
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1. Introduction

The problem of interpreting a nat니ral line drawing as 
a solid object is, in principle, impossible: for any 
natural line drawing, there are an infinite number of 
solid objects which co니Id, if viewed from the correct 
viewpoint, result in that drawing. In order to make the 
problem more tractable, some simplifying assumptions 
are required.

Unfortunately, as [2, 15] point out, some of the 
assumptions made in the past have overly simplified 
the problem. Algorithms which work very well if these 
assumptions are met are far less successful (if they 
work at all) in the general case. One well-known 
example of these is Clowes-Huffman line labelling [1, 
3], a proced니re which is very effective indeed for 
drawings of objects containing only trihedral vertices, 
but which is less effective (when it works at all) for 
drawings of objects containing higher-valency vertices.

A trihedral vertex is a vertex at which exactly three 
edges meet. When viewed in a line drawing, each edge 
could result in a line which is visibly convex, visibly 
concave, or occluding (and hence convex in the solid 
object); in the case of occl니ding lines, there are two 
conceivable labels, since the region on one side of the 
line is occluding and that on the other is oc이니ded.

By exhaustive analysis of the possibilities, Clowes 
[1] and Huffman [3] showed that in any valid drawing 
of a trihedral object, there are only 6 possible L- 
j unctions (not 16), only 3 possible Wjunctions (not 
64), and only 5 possible Yjunctions (not 64). These, 

together with the 4 possibilities at occluding T-junctions, 
make up the Clowes-Hufifman catalogue.

By applying the 1-node constraint that each junction 
in the drawing m나st be labelled with a label *in  the 
catalogue, and the 2-node constraint that each line in 
the drawing must have the same label at either end, the 
possible ways of labelling the drawing can be 
enumerated. There are many algorithms for 
implementing Clowes-Huffinan labelling - the simplest 
to implement is Kanatani's algorithm [5], shown below.

[Initialisation]
For each junction, candidate label set all valid 
labels for that junction type
For each bo니ndary line, candidate label set = 
{occluding such that outside is occluded}
For each non・bo니ndary line, candidate label set = 
{occluding to left, occluding to right, convex, 
concave}
Set of junctions to be processed Sj = (all junctions}
Set of edges to be processed SL = {all edges}
[Processing]
Loop
For each junction in Sj
Eliminate from the candidate label sets for 
neighbo니ring lines any line labels inconsistent with 
the remaining candidate labels for this junction
If the junction label is uniq니e, remove the junction 
from Sj
For each line in SL
Eliminate from the candidate label sets for the 
neighbouring junctions any junction labels 
inconsistent with the remaining candidate labels for 
this line
If the line label is unique, remove the line &om SL
Exit the loop if Sj and SL are both empty (a unique
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labelling has been obtained)
Exit the loop if the candidate label set for any 
junction or line is empty (no valid labelling can be 
obtained given the starting conditions)
Exit the loop if no candidate labels were eliminated 
in this iteration
End Loop

Kanatani^ algorithm only returns a unique labelling 
if there is only one valid way of labelling the drawing, 
but this is commo이y the case with trihedral drawings. 
For this reason, although line-labelling algorithms are 
O(en) in theory, they are 니sually O(n) in practice, as 
[10] has confirmed experimentally.

Extension of these algorithms to allow extended 
trihedral vertices does not materially alter this success 
[10] (an extended trihedral vertex is one at which 
exactly three face planes meet; there may be 4 or 6 
edges).

However, extension to allow tetrahedral vertices does 
materially alter the result (a tetrahedral vertex is one at 
which exactly ftmr edges meet). The junction catalogue 
of views of tetrahedral vertices is no longer sparse [14]. 
For example, there are 27 possible tetrahedral Y- 
j unctions, so (including both trihedral and tetrahedral 
labels) 32 of 64 Y-junction labels are possible. As a 
result, drawings of tetrahedral objects usually have 
many possible labellings; enumerating them all is very 
slow (and often impractical), and there is the additional 
problem of selecting the best of these interpretations 
[14].

The problem becomes even worse when higher- 
valency vertices are allowed. The Clowes-Hufftnan 
approach [1, 3] analysed 256 configurations to obtain a 
catalogue of 14 junction labels. The similar approach for 
tetrahedral vertices [14] analysed 69632 configurations 
(65536 general tetrahedral vertex configurations, phis 
4096 K-vertex configurations-see Section 2 for a 
description of K-vertices) to obtain a catalogue of 109 
junction labels. Extendin응 this approach to produce a 
full catalogue of (for example) general 8-hedral 
vertices is clearly impractical.

Huffinan [4] describes a test which can determine 
whether or not a particular Ruction label is valid for 
higher-valency vertices, but not a fast algorithm for 
performing this test. Even if such an algorithm existed, 
the problems of speed (enumerating all the possible 
labellings is slow) and choice (heuristics are required to 
choose between the possible labellings) remain.

Huffman [4] also illustrates how catalogue-based 
labelling methods can lead to labellings which have no 
geometric interpretation, a problem which has been 
considered further in [16].

In summary, Clowes-Huflman labelling, although 
excellent for labelling drawings of trihedral objects, is 
not a good choice for more general natural line 
drawings.

It is not the purpose of this paper to describe 
alternative algorithms which may supersede Clowes- 
Hufftnan labelling. Work on developing such algorithms 
continues, e.g. [17]. Nor does it examine alternative 
approaches which attempt to do without labelling when 
processing natural line drawings [9] or wireframe 
drawings [6, 7, 13].

Instead, this paper provides a test set of drawings by 
means of which the performance of such algorithms 
can be evaluated. It concentrates on two particular 
types of higher-valency vertices. Section 3 describes 
some simple extended-K-vertices (vertices which can 
appear in objects containing only cuboids and axis- 
aligned wedges). Section 4 describes some rotationally 
-symmetric vertices. Section 5 shows drawings intended 
to represent realistic engineering objects which include 
such vertices. Section 6 presents some conclusions.

Together, the drawings in Sections 3, 4 and 5 
perform a number of functions. They show that higher- 
order vertices are a realistic feature of engineering 
design, not a rare curiosity which can be ignored in 
practice. They illustrate the scope of the labelling 
problem for general polyhedra, drawing attention to 
some subproblems which do not occur in restricted 
subsets of the problem s니ch as trihedral polyhedra. 
Practically, they comprise a test set which can be used 
for evaluating new approaches to interpreting line 
drawings, to determine whether or not these approaches 
can deal effectively with higher-valency vertices.

To facilitate the use of these drawings as a test set, 
they are available for download in three formats (list of 
junctions and lines, Postscript, and GIF) at http:// 
ralph.cs.cf.ac.uk/Data/sketch.html (the Fourth Test Set).

2. K-Vertices

A K-vertex is a tetrahedral vertex formed entirely 
from cuboids and axis-aligned wedges; when folly- 
visible, the shape is reminiscent of a capital K. There 
are fb니!*  types of K-vertex, ill나strated in Fig. 1. The K- 
vertices are shaded.

The complete catalogue of K-vertex labels was 
obtained by the following procedure [14]. Split the

Fig. 1. The Four Types of K-Vertex.
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Gaussian sphere into regions by creating four planes 
through the origin. Three of the planes should be 
perpendicular; the fourth should be a linear combination 
of two others. For each combination of 응olid and empty 
regions which meet the criteria for a valid single 
manifold polyhedral object, (I) view the central junction 
from one viewpoint located in each empty region, and 
for each view in which the central j니action is not 
occluded by solid (a) count the number of visible lines 
(if the ray from the intersection of the line with the 
Gaussian sphere to the viewpoint passes through a 
solid region^ the line is not visible); (b) determine the 
orientation of the visible lines, and order them 
clockwise; (c) for each visible line, determine whether 
it is concave, convex, clockwise-occluding or anticlockwise 
-occluding; (d) derive the junction label from the 
number of visible lines and the line types; (II) o나tput 
the set of junction labels for the different viewpoints of 
this vertex as a single gro나p.

A combination of solid and empty re흥ions is valid 
providing it meets the following criteria [14]: (a) at 
least one region must be solid; (b) at least one region 
must be empty; (c) the solid regions must be comigu。나& 

in order for the solid to be manifold; (d) the empty 
regions must also be contiguo나s; (e) points and lines 
may not be degenerate (eg the four regions viewed 
cyclically about a line may not be solid-empty-solid- 
empty, as this would produce two degenerate lines); (f) 
none of the planes may divide the sphere into an 
entirely s이id part and an entirely empty part (there 
would be no junction to see).

Note that this is, essentially, an extension of the 
procedure used for the Clowes-Huffman catalogue.

3, Extending K-Vertices

As seen in the previous section, K-vertices are produced 
when one axis-aligned wedge meets one or more 
cuboids. They are particularly common in engineering 
objects since most engineering objects can be considered 
as unions of cuboids and axis-aligned wedges [11].

The concept of K-vertices can be extended to a more 
general class by considering all vertices which can be 
formed by unions of cuboids and axis-aligned wedges.

However, exhaustively cataloguing these extended- 
K-vertices is impractical. While there are only 4 basic 
types of K-vertex, there are many more basic types of 
extended-K-vertex (the number is probably in the 
thousands). Fortunately, it may also be noted that since, 
as shown in Section 1, catalo흥ue-based methods are no 
longer considered appropriate, it is not necessary to 
produce a foil catalogue of such vertices. Instead, this 
section shows only the simplest combinations of 
cuboids and wedges, starting with unions of two such 
primitive solids and progressing only as far as unions 
of three primitive solids.

Note that at least two of the primitive solids must be 

wedges - if there are no wedges, the vertex is trihedral 
or extended trihedral. Additionally, if there is only one 
cube and one wedge, the vertex is a K-vertex. Note 
also that the objects in this section are not miiror- 
symmetric-the reflected version of each has been 
omitted for brevity;

3.1. Two Wedges
Fig. 2 shows an object constructed from the union 

of two wedges. Although only four lines meet at the 
emphasised junction in the figure (shaded), this 
junction clearly corresponds to a 5-hedral vertex since 
the two 而demeath” faces cannot be coplanar

3.2. Three Wedges
Fig. 3 shows an object constructed from the union of 

three wedges. The central junction is visibly 5-hedraL

3.3. Two Wedges, One Cuboid
In several of the figures in this section there is a two- 

line cross configuration which does not appear in 
tetrahedral or extended-trihedral junctions. This 
configuration (where two lines cross at a point where 
one ore more other lines terminate) can present data 
representation problems if a data representation based 
on tetrahedral or extended trihedral junctions is 
extended to allow for more general vertices.

3.3.1. Both Wedges Adjacent to Cuboid
Fig, 4 shows objects constructed from the tmhm of 

two wedges and a cuboid, with both wedges adjacent 
to the cuboid. Note that some combinations produce

Fig. 2. Object from Two Wedges.

Fig. 3, Object from Three Wedges.
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Fig. 6. Two Wedges Adjacent to One Another.

general tetrahedral vertices - since these have already 
been catalogued elsewhere [14], they are omitted.

3.32 Wedges Adjacent to One Another
Fig. 5 and Fig. 6 show objects constructed from the 

union of two wedges and a cuboid, with the wedges 
adjacent to one another.

Fig. 5 shows unique vertex types. Tn the drawings in 
Fig. 6, the non-aligned plane of the wedge does not 
Pass thro니gh the central point; the resulting vertex 
types can also occur as unions of one wedge and two 
cuboids, and so are equivalent to the central vertex in 
Section 34

Fig. 5. Two Wedges Adjacent to One Another.

3.4. One Wedge, Two Cuboids
Fig. 7 sho디vs the only higher-valency vertex type 

constructed from one wedge and two cuboids-although 
only 5 lines are visible, it is clearly 6-hedral.

Fig. 8. Two Wedges Adjacent to Tall Cuboid.
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3.5. Two Wedges, One Tall Cuboid
This subsection is not an exhaustive catalogue. 

Instead, it illustrates only those vertices which are 
obtained if the cuboids in Section 3.3 are extended 
니pwards. If the exhaustive space-dividing search 
approach were followed, these would be regarded as 
unions of two wedges and two cuboids.

3.5.1. Both Wedges Adjacent to Cuboid
It is interesting that when the cuboids in Fig. 4 are 

extended upwards, as in Fig. 8, all five vertices become 
similar: 6-hedral, with alternating convex and concave 
edges.

3.5.2. Wedges Adjacent to One Another
Fig. 9 shows the results when the cuboids of Fig. 5 

are extended upwards.

3.6. Two Wedges, One Long Cuboid
This s니bsection is not an exhaustive catalogue. 

Instead, Fig. 10 illustrates only those vertices which are

Fig. 9. Two Wedges Adjacent to One Another.

Fig. 10. Two Wedges Adjacent to Long Cuboid.

obtained if the cuboids in Section 3.3 are extended to 
touch both wedges. Note that some of the resulting 
solids are non-manifold; these are excluded. If the 
exhaustive space-dividing search approach were 
followed, these would be regarded as unions of two 
wedges and two cuboids.

4. Rotation지ly・Symmetric Vertices

In practice, perhaps the most common objects in hich 
higher-valency vertices are routinely observed are screws 
and screwdrivers. For ease of presentation, this section 
illustrates convex screwdriver heads rather than concave 
screw heads. Some of the screwdriver heads illustrated 
here have been observed in real objects; the remainder 
(the majority) are natural extensions of the same idea. 
This is not a complete catalogue: only 6-hedral and 8- 
hedral heads with rotational symmetiy are considered.

4.1. 6-Hedral Heads
The centres of rotation in Fig. 11 are, respectively, 

all-convex, alternating convex and concave, and 
alternating convex and concave with the convex edges 
being coplanar. The first object has C6 (sixfold 
rotational) symmetry; the other two have C3 (threefold 
rotation 지) symmetiy The rotationally-symmetric 
vertices are shaded.

The first two drawings in Fig. 12 have four convex 
and two concave edges; in the second drawing, the 
convex edges are coplanar. The third drawing has two 
convex and four concave edges. All three objects have

Fig. 11.6-hedral Vertices.

Fig. 12.6-hedral Vertices.
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4.2. 8-Hedral Heads
The centre of rotation in Fig. 13 is all-convex. The 

object has C4 symmetry (objects with C8 symmetiy are 
of course also possible).

The centres of rotation in Fig. 14 are all alternating 
convex and concave. In the second drawing, one pair 
of convex edges is collinear; in the third drawing, both 
pairs of convex edges are collinear. The second object 
has C2 symmetry; the other two have C4 symmetry. 
The crossing-lines configuration, noted for extended- 
K-vertices, can be seen in the third drawing.

The preferred interpretation of the central vertex in 
the first drawing of Fig. 15 has two opposed edges 
which are concave, the remainder being convex. It has 
C2 symmetry. It is possible to construct similar objects 
in which two opposed convex edges are collinear, or 
two pairs of opposed convex edges are collinear 
(forming two coplanar faces), while retaining the C2 
symmetry (these objects are not illustrated). The 
second drawing shows a central vertex in which pairs

Fig. 13. 8-hedral Vertices.

Fig. 15. 8-hedral Vertices.

Fig. 16. 8-hedral Vertices.

of convex edges alternate with pairs of concave edges. 
It too has C2 symmetry. The third drawing shows a 
similar central vertex at which all of the convex edges 
are coplanar. It too has C2 symmetry (as do objects, not 
ill니strated, where only one pair of opposed convex 
edges are collinear). The crossing-lines configuration, 
noted fbr extended-K-vertices, can again be seen here.

By comparison Fig. 15, Fig. 16 can reasonably be 
interpreted as showing objects whose centres of 
rotation have two opposed convex edges, the remaining 
edges being concave (although it is far from clear that 
these should be the preferred interpretations, 
particularly in the case of the second drawing). In these 
interpretations, both objects have C2 symmetry; in the 
second object, the opposed convex edges are collinear.

5. Realistic Engineering Objects

Practical engineerin항 objects frequently contain 
symmetry: an axis of rotational and/or a plane of 
mirror symmetry (the reasons, both aesthetic and 
practical, fbr this are described in [8]). In attempting to 
create a convincing set of objects which look as if they 
might be concept designs for new engineering objects, 
I have applied symmetry to a selection of the vertex 
types presented in the two previous Sections.

The two drawings in Fig. 17 illustrate a specific 
problem: a junction label normally associated with 

Fig. 18. Problematic Cross-Junctions.
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occluding T・j니nctions here represents an extended-K- 
junction (the problematic junctions are shaded). ([12] 
includes a drawing similar to the second of these, but 
without the mirror symmetry and without the 
problematic T-junction).

Fig. 18 illustrates a further problem associated with 
the cross-configuration. At one, there are only the two 
crossing lines. At the other, the two lines cross at the 
termination point of two other lines.

Figs 19-24 do not illustrate any particular point other 
than that engineering concept drawings may reasonably 
include higher-valency vertices.

Fig. 19. Example Objects with Higher-Valency Vertices.

Fig. 20. Example Objects with Higher-Valency Wrtices.

Fig. 21. Example Objects with Higher-Valency Vertices.

Fig. 22. Example Objects with Higher-Wlency Vertices.

Fig. 24. Example Objects with Higher-巧lency Vertices.

6. Conclusions

This paper has presented drawings of polyhedral 
objects containing higher-valency vertices, showing 
that although these are not common in engineering 
objects, they are not so rare that they can be ignored. 
As and when new methods for producing frontal 
geometries from line drawings, capable of processing 
higher-valency vertices, are developed, these drawings 
can be used as a test set.

We have not attempted to develop any mathematical 
theory of higher-order vertices. Such theory as already 
exists [4] has not proven useful in practice as it has not 
led to a general labelling algorithm. It remains possible 
that an alternative theoretical approach would be more 
productive, and this is one possible route towards 
developing a general algorithm.
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