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Abstract 一 This paper presents a scheme for interpolating intersecting uniform cubic B-spline curves by Catmull-Clark 
subdivision surfaces. The curves are represented by polygonal complexes and the neighborhoods of intersection points are 
modeled by X-Configurations. When these structures are embedded within a control polyhedron, the corresponding curves 
will automatically be interpolated by the surface limit of subdivision of the polyhedron. The paper supplies a construction 
which clearly shows that interpolation can still be guaranteed even in the absence of symmetry at the X-confi흥urations. In this 
sense, this scheme generalizes an already existing technique by the same authors, thereby allowing more freedom to designers.
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1. Introduction

The term lofting has its historical origins in the days 
when ship hulls were designed man니ally. Nowadays, 
this is used, in the context of geometric modeling and 
computer-aided design, more with reference to the task 
of generating a surface interpolating a sequence of non 
intersecting curves [4, 5, 6]. This is somewhat 
generalized in [12] for the interpolation process to 
work even when it starts with an arbitrarily-connected 
network of polygons representing arbitrarily intersecting 
smooth curves.

It goes without mentioning, of course, that the degree 
of arbitrariness of the connection of the input curves is 
bounded by the compatibility of these curves with an 
adeq니ately smooth interp이ating surface. One can say, 
for instance, that smoothness adequacy is reached 
when the tangents to these curves, at the intersection 
point, are coplanar. At the same time, the underlying 
process should not be hindered by the fact that a 
multiplicity of surfaces can satisfy the interpolation 
constraint.

The scheme described in this paper may be utilized 
in two possible scenarios: (1) when the control polygons 
are given without any additional information, and (2) 
when these polygons are tagged edges on an existing 
control polyhedron, with many of these having 
common intersection points.

Our approach [2] to the solution of the above 
interpolation problem relies on the following elements:
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• The tagged polygons are re-represented by equivalent 
polygonal complexes [10] constructed as an integral 
part of the control polyhedron representing the 
surface.

• The regions, where the complexes meet in this 
network, are called X-Configurations. As have originally 
been envisaged, these configurations are designed 
to have specific symmetry and planarity properties 
necessary to guarantee interpolation at the limit of 
the subdivision process by a surface with an 
adequate degree of smoothness.

• Since interpolation can never be achieved at 
extraordinary points (see [9] and [12]) with the 
standard subdivision coefficients, the coefficients 
are slightly modified at and in the vicinity of the 
extraordinary points. Yet, in spite of modification, 
analysis of the corresponding s니bdivision matrix 
[3] shows that the resulting surface is still smooth, 
even at the extraordinary points.

The final gap that still exists in the above picture is 
to show how to re-represent the initial network of 
polygons within the same control polyhedron. This 
should be done in such a way that, when subdivided, 
this polyhedron leads to an adequately smooth surface 
interpolating the initial c니rve network. Among other 
things, the construction suggested in this paper 
attempts to do without the symmetry and co-planarity 
constraints proposed in [2].

2. Catmull-Clark Subdivision 
and Polygonal Complexes

The material presented in this section is necessary to 
make subsequent material better 니nderstood. Here, the 
reader might find that the particular labeling of vertices 
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in the following subsection somewhat counter-intuitive. 
However, these labels are deliberately designed to 
match other labels for other vertices in subsequent 
sections of the paper in support for the point we are 
trying to make.

2.1. Uniform Cubic Subdivision of a Polygon
In a sin이e subdivision step (see Fig. 1), the control 

polygon P = [Ao, Eo, Fo, ...] is subdivided into a polygon 
Q = [a(), e0, m0, Q), Po,…]as follows:

• e0, nQ and q0 are the midpoints of the edges A0E(), 
E0F0 and F0G0 respectively, etc.

• m0 and p0 are the midpoints of the edges joining 
the midpoints of Eono and Eoeo and the midpoints 
of Fono, and Foqo respectively, etc.

Repeating this process sufficiently often will lead to 
a cubic B-spline curve. In this process, the extremity 
Ao of the open polygon is interpolated by the limit 
curve 니nder the version of this subdivision scheme 
being adopted here.

2.2. Catmull-Clark Subdivision of a Polyhedron
In a single CC subdivision step (see Fig. 2), a control 

mesh M is s니bdivided into another control mesh M‘ 
(see [7] for more details), as follows:

Each face F of the mesh 응ives rise to an F-vertex that 
is the average of the vertices of the face F. Each inner 
edge E gives rise to an E-vertex that is the average of 
the vertices of the ed흥e together with the F-vertices of 
the adjacent foces of E. Each inner vertex v gives rise 
to a V-vertex specified by the expression ((n-2)*v + (R 
+ S)/n)/n, where

• n is the number of faces adjacent to v
i= 1

• R= £ v;- , where v is the other vertex of an edge
n

incident on v in the corresponding mesh.
i— 1

• S = £ \上，where Vr is an F-vertex of a face £ of the
n

mesh adjacent to the vertex v.
At the end of this process, each F-vertex is connected 

to the adjacent E-vertices and each E-vertex is connected 
to the adjacent V-vertices. The res냐Iting faces will form 
the new subdivided mesh. Repeated application of this 
subdivision process will lead to a smooth surface.

Accordingly, the boundary vertices and ed응es do not 
contribute any new vertices. In other words, the initial 
boundary vertices will not be interpolated by the limit 
surface in the version of the subdivision scheme 
adopted here.

2.3. Polygonal Complexes and Their Limit Curves
A simple CC polygonal complex (see Fig. 3) is a 

3 x n matrix M of points 冀presentin응 three control 
polygons: top(ti), middle(mi) and bottom(bj), all having 
the same n니mber n of vertices. S니ch a complex may 
also be seen as a sequence of pairs of rectangular faces; 
where each pair of faces of the sequence has a common 
edge and each two consecutive pairs have common 
respective edges.

A general CC polygonal complex (see Fig. 4) is 
enco니ntered when the control polygons (t。, (m» and 
(bi) do not all have the same number of vertices. In 
other words, the corresponding faces are not all 
rectangular at the outer edges. However, each inner 
vertex of a CC complex must still be regular in the

Fig. 2. Catmull-Clark Subdivision of a Polyhedron. Fig. 4. A General Polygonal Complex.
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sense that it connects exactly four edges. Here, a 
general CC complex reduces to a simple one after a 
single CC s니bdivision step.

Under subdivision, a CC complex goes through a 
seq나ence of thinner and thinner complexes leading, at 
the limit, to a smooth curve. Moreover, the limit of a 
simple CC complex M is a cubic B-spline curve whose 
control polygon P is given by the following formula 
(see [10]):

(1/6)*[1 4 1]*M (1)

Thus, when a complex is embodied within a control 
mesh, its limit curve is automatically interpolated by 
the limit surfoce of the mesh. More importantly 
perhaps, the limit of a CC complex M' is a B-spline 
curve identical to that of m, when M' is obtained from 
M by substituting the mid-row m of M by the polygon 
(see [11]):

m，= (l/4)*[-l 6 -1]*M (2)

This way a curve defined by a control polygon (mJ 
can be turned into a polygonal complex M by adding to 
it two more rows of points (t,) and (bi). This way, 
transformation (2) guarantees that any mesh embodying 
M' will interpolate the original curve of (m。.

Property 1: when a CC complex M is subdivided 
one step into M' and when the limit poly응on P of M is 
also subdivided one step into P‘，the property stated in 
equation (1) will be preserved under subdivision. That 
is, P' will be identical to (1/6)*[1 4

This property is worth remembering, as it is the 
source of the int니ition that motivated the development 
of the sol니tion to the interpolation problem presented 
in this paper.

2.4. X-Configurations
The previous section established the correspondence 

between CC complexes and cubic B-spline curves and 
the usefulness of that for interpolating of isolated (non­
intersecting) curves. In this section, this notion will be 
further developed to deal with situations where the 
given curves can intersect.

As an initial motivation, note that when two 
complexes meet end-to-end, their limit curves will 
meet but might not remain the same in the immediate 
neighborhood of their meeting point (see Fig. 5). This 
is to be expected, since the middle vertex there is no 
longer a border vertex. However, this vertex will be

Fig. 5. Intersection of Two Complexes.

reg니lar. The same observation holds when the number 
of complexes is four (see Fig. 6).

In both cases, it would be interesting to have some 
degree of control over the way these complexes behave 
at their meeting point so that their corresponding 
curves meet at this same point exactly without the need 
for any further manipulation.

In the same context, when the number of complexes 
is not two or four, the centre vertex will not be regular. 
This also says that each connecting complex will not be 
regular around the centre vertex in the sense discussed 
above, because all polygons of various complexes will 
have this vertex as their meeting point. This provides 
the second motivation for determining a structure with 
a predictable behavior at the limit of the subdivision. 
Hence, the following definitions:

Definition 1: an X-Slice is a closed polygon with 
one of its vertices marked as its starting point.

Definition 2: an X-Configuration is composed of an 
even number n (n > 4) of X-Slices, all adjacent (one to 
the next and the last to the first) around the same 
starting point.

2.5. Symmetric X-Configurations
A symmetiy condition can be formulated so that, 

when satisfied by an X-Configuration, will leave the 
centre of the X-Configuration undisturbed under CC 
s니bdivision. This observation follows immediately from 
the symmetric formulation of the CC subdivision rules.

This condition can be stated as follows (see Fig. 8): 
the 2k X-Slices go around the centre of the X-

Fig. 7. An X-Configuration (One Shaded X-Slice).
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Fig. 8. A Symmetric X-Configuration.

Fig. 9. Intersection at a Symmetric and Planar X-Configuration.

Config니ration in consecutive pairs. Each component of 
a pair of X-Slices is a reflection of its counterpart with 
respect to their common edge. Furthermore, each X- 
Slice is a reflection of the X-Slice directly opposite to 
it with respect to the centre of the X-Configuration.

This symmetry condition does not in any way imply 
that all the vertices of the X-Configuration involved are 
necessarily coplanar. Moreover, we do not exclude the 
possibility that a more general (b니t more subtle) version 
of this condition can be fbrm니lated.

It is straightforward to see that a one-step subdivision, 
of a symmetric X-Configuration, results in a symmetric 
X-Configuration and the limit of s니bdivision of a 
symmetric X-Configuration is a point that is precisely 
its innermost vertex.

Consequently, when any number n (n > 2) of complexes 
meet at a symmetric and planar X-Configuration of the 
kind discussed above, one would be justified in 
expecting that the corresponding limit curves will meet 
at the centre of this X-Configuration and that the 
surface will be tangent-plane continuous there.

For instance, if two complexes meet at a symmetric 
X-Configuration, then the curves corresponding to 
these two complexes will meet at the centre of this X- 
Configuration and will be smooth there (see Fig. 9). 
However, this is not generally true in the absence of 
symmetry. Symmetry also permits the interpolation of 
a curve that carries through the centre of an X- 
Configuration. This added feature comes at no extra cost.

3. The Curve-Network Interpolation Task

We view the interpolation process as composed of 

the following steps:
• Each curve of the tagged control polygons is 

represented by a polygonal complex that corresponds 
to the same curve at the limit of subdivision [11].

• An X-Configuration with the desired planarity and 
symmetry characteristics is constructed at each 
region where two or more of these complexes meet. 
However, in view of the fact that the symmetry 
constraints are not so easily realizable in all 
situations, we will explore the possibility of whether 
these properties can be waived in order to reduce 
the difficulty of the construction. We stress that this 
can be done only at the expense of smoothness at 
the corresponding extraordinary points.

In the regions delimited in the mesh by various 
polygonal complexes, additional control points may be 
introduced in order to close the wider gaps that might 
otherwise still appear in the mesh. This process is often 
referred to as skinning [11, 12, 13]. These extra points 
will allow the designer the ability to satisfy further 
requirements such as local normal and curvature 
constraints [1],

3.1. Constructing X-Configurations \Mtiiout Symmetry 
and Co-Planarity Properties

The construction of an X-Configuration is illustrated by 
an example of 3 curves meeting at a point (see Fig. 10). 
Assume that A0B2, A0B3 and A()Ei are the tagged 
(marked as grey) edges of three control polygons 
meeting at Ao. This is done in the absence of any 
ass니mption concerning symmetry and planarity around 
the meeting point. An X-Configuration may be 
constructed around this meeting point as follows.

First, the extremities of the neighboring end edges 
are joined together so as to obtain the virtual edges 
B2B3, B2Ei and B3E1. Second, Ao is joined with each of 
the middles of these virtual edges and the corresponding 
edge is stretched beyond the middle with an equal 
distance, thus obtaining the points Ab D2 and D3, 
respectively. Finally, A2 (for example) is constructed in 
such a way that the face AoAqAzB? is a parallelogram. 
The other points A3, C2, C3, E2 and E3 are constructed 
similarly.

The thickness of the emerging polygonal complexes 
can be controlled through controlling the length of the 
edges A0A], A0D2 and A0D3. This helps in avoiding 
any undesirable intersection with other edges of the 
mesh.

The co-planarity of the initial end edges is by itself a 
sufficient condition fbr the planarity of the resulting X- 
Configuration. The same applies very well for the 
symmetry property. Moreover, in the case where B2, Ao 
and B3 are co-linear, for instance, A] can simply be 
selected in the plane orthogonal to that line at Ao and 
the construction carries on from there. There might be 
too much freedom to handle here, b니t the following 
paragraph provides for additional justifications.



Abdulwahed Abbas, et al. A Generalized Scheme for Constructing Meshes of Catmull-Clark Subdivision Surfaces. 95

Fig. 10. X-Configuration Construction in the Case of Three 
Polygons Meeting at the Same Point.

Even though the construction of these extra points 
looks close to arbitrary, it is already shown in details 
in [2] that the exact choice of these points do not affect 
the interpolation constraints, because repositioning the 
initial control points with respect to the new points is 
going to be done before s니bdivision begins. However, 
this choice will obviously affect the quality of the 
interpolating surface. Again, it is shown in [1] how this 
extra degree of freedom can be utilized for the benefit 
of the design.

This construction process can be cast under the form 
of a general algorithm (see Fig. 10). Indeed, an X- 
Configuration can be defined by 2 x N (N here represents 
the valence of the meeting point) X-Slices meeting at a 
common point, say Ao, with the property that each X- 
Slice is a parallelogram with:

• One side (e.g. A0B2) is a tagged edge passing 
thro니gh Ao.

• The next side (i.e. AoAt) passes through the middle 
of the line joining the extremities B2 and B3 of the 
tagged edges A0B2 and A0B3 joining at Ao.

32 Virtual Face Construction
The underlying insight for achieving interpolation is 

that the vertices of the polyhedron should constantly 
correspond to their counterparts in the curve being 
interpolated at every step of the subdivision process 
right to the limit of the subdivision. This correspondence 
is very well summarized in Property 1. Accordingly, 
the subdivision coefficients of an X-Configuration will 
be modified following the approach suggested in [2]. 
This again makes use of the notion of virtual faces for 
providing a geometric justification of the new subdivision 
coefficients (see Fig. 11).

In this construction, the points S2 and 83 are the 
reflections with respect to Ao of D2 and D3 respectively. 
This way, D\ and D\ are the midpoint of D283 and 
82D3 respectively. Accordingly, A0E1E2D2 and AqEjEsD^ 
are the virtual faces corresponding to A0EE2D2 and

A0E1E3D3 respectively. Accordingly, the following 
identities are established:

D\ = (D2 + 2A0 - D3)/2
D，3 = (D3 + 2A0 - D2)/2

These identities are invariant in all situations without 
reliance on any specific property (such as symmetry or 
co-planarity) of the X-configuration. Clearly, Ao is the 
midpoint of the segment which, as shown in 
[2], constitutes a sufficient condition guaranteeing 
interpolation at the corresponding extraordinary points.

Following the same approach of [2], the Catmull- 
Clark subdivision scheme is modified in the following 
ways:

• The V-vertex of the extraordinary point Ao is itself.
• Any X-Slice F of an X-Configuration is substituted 

by its corresponding virtual fece F' when calculating 
its F-vertex.

The CC subdivision is not modified anywhere else.

3.3. The Subdivision Matrix
The above virtual face constT니ction reflects itself 

by a subdivision matrix to be applied only at X- 
Configurations and nowhere else. The subdivision 
matrix is the same as the one given in [2] but after 
replacing the matrix parameter t by 1/2.

The coefficients of the subdivision matrix are just a 
particular case of the coefficients of the matrix presented 
in [2], even though the construction used to get the 
coefficients is radically different. This factor may be 
used in s니pport of the validity of the s니bdivision 
scheme.

The application of this s나bdivision matrix guarantees 
the smoothness of the interpolating limit surfaces only 
when the corresponding X-Configurations are symmetric 
and co-planar. In this case, the eigenvalue of the matrix
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Fig. 12. The Subdivision Matrix.

216 12 12 12 8 8 8 2 2 2 2 2 2 .
144 108 0 0 0 0 0 18 18 0 0 0 0
144 0 108 0 0 0 0 0 0 18 18 0 0
144 0 0 108 0 0 0 0 0 0 0 18 18
144 18 0 18 72 + 36t -18t -18t 18 0 0 0 0 18
144 18 18 0 -I8t 72+36t -18t 0 18 18 0 0 0

_L_X
288 144 0 18 18 -18t -18t 72+36t 0 0 0 18 18 0

144 72 0 0 72t -72t 0 72 0 0 0 0 0
144 72 0 0 -72t 72t 0 0 72 0 0 0 0
144 0 72 0 0 72t -72t 0 0 72 0 0 0
144 0 72 0 0 -72t 72t 0 0 0 72 0 0
144 0 0 72 -72t 0 72t 0 0 0 0 72 0
144 0 0 72 72t 0 -72t 0 0 0 0 0 72

satisfy the conditions for smoothness suggested in [3].
Tn all other cases, the smoothness of the surface in 

the regions where the matrix is applied depends on the 
relative positions of the corresponding vertices of the 
control mesh. That is, the s니rfhce might have features 
s니ch as bumps, creases, etc. However, the interpolation 
constraints will be respected in all situations. In s니ch 
cases, the subdivision matrix is the same as the one 
given above except that t is replaced by 1/2 and the 
first row by

[288 00000000000 0]

34 X-Complexes
An X-Complex unit is defined to be an open 

polygonal complex terminated at either or both ends by 
an X-Configuration (see Fig. 13). An X-Complex is 
also defined to be a network of X-Complex units that 
meet at common X-Configurations.

3.5. The Repositioning Process
The s니bdivision of an X-Complex unit is an X- 

Complex unit and the limit of the subdivision of an X- 
Complex 니nit is a curve delimited at either or both 
ends by the centre of the X-Configuration of the 
corresponding X-Complex unit. The limit curves possess 
exact expressions through multiplication by the matrix 
[1 4 l]/6 (see eq니ation (1)). Similarly, the curve 
corresponding to the middle polygon of this X- 
Complex unit is interpolated through m니Itiplication by 
[-1 6 니]/4 (see equation (2)). The full details of how 
this is obtained can be found in [2].

That is, away from the intersection point, the vertices 
of the tagged edges are repositioned as follows. 
Assuming P to be a tagged vertex, let O and N be the 
vertices of the polygonal complex adjacent to P from 
either side (see Fig. 14):

• The centre G of the X-Config니ration remains

invariant
• The vertex P is repositioned by multiplying the 

matrix [O P N] by [-1 6 -l]/4.

3.6. An Illustrative Example
Given a curve network embedded within a mesh, 

when each c니rve of the network tagged for interp시ation 
corresponds to an X-Complex unit and each meeting 
point in the network corresponds to an X-Configuration, 
and when the mesh is s니bdivided according to the 
coefficient specified by the matrix in Fig. 12, the 
res니ting limit surface from the mesh will interp이ate 
the curve network.

Moreover, the degree of smoothness of the surface

Fig. 15. Initial X-Complex and Polyhedron.

Fig. 13. An X-Complex Unit. Fig. 16. Interpolation of Intersecting Curves.
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Fig. 17. Another X-Complex and Polyhedron.

Fig. 19. Arbitrarily Connected Initial Polyhedron Red Edges are 
Tagged for Interpolation.

Fig. 20. Adjusting Polyhedron Connections so as to Embody the 
New X-Configuration.

Fig. 18. Interpolation of More than One Intersection Points.

will depend on the position of each constituent curve 
relative to each other at their respective meeting points.

Tb illustrate the working of this scheme, Fig. 15 shows 
an initial polyhedron with an embedded X-Complex. 
Fig. 16 shows the limit intersecting c니rves of this 
complex being interpolated by the limit surface of this 
polyhedron. The X-Configuration at the centre of this 
complex is deliberately deprived of any symmetry or 
planarity characteristics. This network also illustrates 
an additional useful feature. In fact, the initial network 
is designed in such a way that the two horizontal curve 
components of the network actually form a single 
smooth curve that carries through the intersection point 
of this network.

Fig. 17 and Fig. 18 provide another illustration 
embodying a network of three X-Configurations.

4. Applications

One immediate application of this approach is to 
modify an existing control polyhedron so as to 
guarantee the interpolation of some of its tagged edges 
by the corresponding limit surface. The process 
consists of constricting an X・Confi흥니ration from the 
vertices and edges at each point common to many 
curves. Some additional vertices/faces might need to be 
added as illustrated in Fig. 19 and Fig. 20.

Another application of the above scheme would be to 
construct a control polyhedron embodying a given 
network of control polygons targeted for interpolation. 

Such an approach is suggested in [8] where a Coon's 
patch of the first degree can be 니sed to generate the 
mesh between the curves.

5. Conclusions

The solution to the interpolation problem presented 
in this paper is very general, 니nifbrm (i.e. no awkward 
particular cases), easy to understand and implement. It 
is a generalization to the approach suggested in [2], in 
the sense that it can be made use of in a wider context. 
Moreover, it has several important applications.
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