Abstract
This paper addresses the application of motor current spectral analysis for the detection of rolling-element bearing damage in induction machines. We set the experimental test bed. They is composed of the normal condition bearing system, the abnormal rolling-element bearing system of 2 type induction motors with shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. We have developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT(Fast Fourier Transform), Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. Especially, the analyzed results by inner product clearly illustrate that the stator signature analysis can be used to identify the presence of a bearing fault.
이 논문은 다른 종류의 유도전동기 구름베어링 손상을 유도전동기 고정자 전류신호해석을 통하여 검출하고 실시간으로 손상을 진단하는 알고리즘을 개발하였다. 유도전동기 구름베어링의 손상을 검출하기 위하여 정상적인 베어링을 갖는 유도전동기, 측정열에 불량을 가지고 있는 전동기와 베어링 외륜에 구멍을 가지고 있는 2가지 종류의 비정상 베어링을 갖는 유도전동기 3set를 실험시스템을 구축하였다. 또한 유도전동기의 구름베어링시스템의 비정상적인 상태에서 고정자전류을 검출하기 위하여 TMS320F2407 DSP 칩을 이용하여 데이터 획득보드를 개발하였다. 이 고정자전류신호를 해석을 통하여 베어링 손상을 검출하기 위한 방법으로 FFT, 웨이브렛 분석 및 내적에 의한 평균 신호패던에 의한 분석결과를 제시하였다. 특히 내적에 의한 신호분석 온 통하여 베어링 손상 여부를 실시간으로 진단할 수 있는 새로운 알고리즘과 분석방법을 제시하였다.