Increased Catalase Activity by All-trans Retinoic Acid and Its Effect on Radiosensitivity in Rat Glioma Cells

백서 교종 세포에서 레티노인산에 의한 카탈라제의 활성 증가가 방사선감수성에 미치는 효과

  • Jin, Hua (Departments of Pharmacology, Chungbuk National University College of Medicine, Medical Research Institute) ;
  • Jeon, Ha-Yeun (Departments of Radiation Oncology, Chungbuk National University College of Medicine, Medical Research Institute) ;
  • Kim, Won-Dong (Departments of Radiation Oncology, Chungbuk National University College of Medicine, Medical Research Institute) ;
  • Ahn, Hee-Yul (Departments of Pharmacology, Chungbuk National University College of Medicine, Medical Research Institute) ;
  • Yu, Jae-Ran (Department of Parasitology, Konkuk University College of Medicine) ;
  • Park, Woo-Yoon (Departments of Radiation Oncology, Chungbuk National University College of Medicine, Medical Research Institute)
  • 김화 (충북대학교 의과대학 약리학교실 및 의학연구소) ;
  • 전하연 (충북대학교 의과대학 방사선종양학교실) ;
  • 김원동 (충북대학교 의과대학 방사선종양학교실) ;
  • 안희열 (충북대학교 의과대학 약리학교실 및 의학연구소) ;
  • 유재란 (건국대학교 의과대학 기생충학교실) ;
  • 박우윤 (충북대학교 의과대학 방사선종양학교실)
  • Published : 2005.12.30

Abstract

Purpose: It has been reported that all-trans retinoic acid (ATRA) can inhibit glioma growing in vitro. However, clinical trials with ATRA alone in gliomas revealed modest results. ATRA has been shown to increase radiosensitivity in other tumor types, so combining radiation and ATRA would be one of alternatives to increase therapeutic efficacy in malignant gliomas. Thus, we intended to know the role of catalase, which is induced by ATRA, for radiosensitivity if radiation-reduced reactive oxygen species (ROS) is removed by catalase, the effect of radiation will be reduced. Materials and Methods: A rat glioma cell line (36B10) was used for this study. The change of catalase activity and radiosensitivity by ATRA, with or without 3-amino-1, 2, 4-triazole (ATZ), a chemical inhibitor of catalase were measured. Catalase activity was measured by the decomposition of $H_2O_2$ spectrophotometrically Radiosensitivity was measured with clonogenic assay. Also ROS was measured using a 2, 7-dichlorofluorescein diacetate spectrophotometrically. Results: When 36B10 cells were exposed to 10, 25 and $50{\mu}M$ of ATRA for 48 h, the expression of catalase activity were increased with increasing concentration and incubation time of ATRA. Catalase activity was decreased with increasing the concentration of AT (1, $10{\mu}M$) dose-dependently. ROS was increased with ATRA and it was augmented with the combination of ATRA and radiation. ATZ decreased ROS production and increased cell survival in combination of ATRA and radiation despite the reduction of catalase. Conclusion: The increase of ROS is one of the reasons for the increased radiosensitivity in combination with ATRA. The catalase that is induced by ATRA doesn't decrease ROS production and radiosensitivity.

목적: all-trans retinoic acid (ATRA)는 뇌종양 세포의 증식억제효과가 있으며, ATRA와 방사선의 병용은 악성 뇌종양의 치료 효과를 증진시키는 방법이 될 수 있다. 그러나 ATRA에 의해 항산화효소가 증가되며 이로 인해 방사선에 의해 생성된 reactive oxygen species (ROS)가 제거된다면 방사선의 효과는 낮아질 수 있다. 본 연구에서는 ATRA에 의해 유도되는 카탈라제(catalase)에 의한 방사선감수성의 변화를 보고자하였다. 대상 및 방법: 백서 교종세포(36B10)을 대상으로 ATRA 및 ATRA의 화학적 억제제인 3-amino-1, 2, 4-triazole (ATZ) 와 병용하여 카탈라제 활성도, 방사선감수성 및 ROS의 변화를 측정하였다. 카탈라제 활성도는 $H_2O_2$의 소멸을 자외선 분광광도계로 측정하는 방법을 이용해 정량하였으며, 방사선감수성은 단일집락군형성능력으로, ROS 는 2, 7-dichlorofluorescein diacetate 를 분광광도계로 측정하였다. 결과: 카탈라제 활성도는 ATRA의 농도(10, 25, $50{\mu}M$)에 따라 증가하였다. ATRA ($10{\mu}M$)와 방사선(4 Gy)의 병용에 의해 생존분획은 상승적(supra-auditive)으로 감소하였으며, 이 감소된 생존분획은 ATZ 동시 투여에 의해 증가하였다. ATRA $10{\mu}M$ 또는 $25{\mu}M$을 48시간 처리 후 ROS는 대조군에 비해 각각 1.5배, 2배 증가하였고, 4 Gy와 ATRA의 병용군에서는 2.5배 증가하였다. ATRA와 방사선의 병용에 의해 증가된 ROS는 ATZ에 의해 감소되었다. 결론: ATRA에 의해 유도되는 카탈라제는 방사선감수성을 감소시키지 않으며, 오히려 ROS의 증가에 의해 방사선감수성을 상승시켰다. 따라서 ATRA와 방사선의 병용은 뇌종양의 치료에 유용한 방법이 될 수 있을 것으로 보인다.

Keywords

References

  1. Korea central cancer registry, Ministry of health and welfare, Republic of Korea. 2002 Annual report of the korea central cancer registry. Seoul; 2003
  2. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol (Berl) 2005;109:93-108 https://doi.org/10.1007/s00401-005-0991-y
  3. DeAngelis LM. Brain tumors. N Engl J Med 2001;344:114- 123 https://doi.org/10.1056/NEJM200101113440207
  4. Choi DH, Kim IH, Ha SW, Chi JG. Radiotherapy results of brain astrocytoma and glioblastoma multiforme. J Korean Soc Ther Radiol Oncol 1988;6:163-168
  5. Nam HR, Lim DH, Ahn YC, et al. The outcome of glioblastoma patients treated with surgery and radiation therapy. J Korean Soc Ther Radiol Oncol 2004;22:91-97
  6. Yung WKA, Lotan R, Lee P, et al. Modulation of growth and epidermal growth factor receptor activity by retinoic acid in human glioma cells. Cancer Res 1989;49:1014-1019
  7. Wang CJ, Chou MY, Lin JK. Inhibition of growth and development of the transplantable C-6 glioma cells inoculated in rats by retinoids and carotinoids. Cancer Lett 1989;48:135-142 https://doi.org/10.1016/0304-3835(89)90050-5
  8. Kaba SE, Kyritsis AP, Conrad C, et al. The treatment of recurrent cerebral gliomas with all-trans-retinoic acid (tretinoin). J Neuro Oncol 1997; 34:145-151 https://doi.org/10.1023/A:1005743707803
  9. Phuphanich S, Scott C, Fishbach AJ, et al. All-transretinoic acid: a phase II radiation therapy oncology group study (RTOG 91-13) in patients with recurrent malignant astrocytomas. J Neuro Oncol 1997;34:193-200 https://doi.org/10.1023/A:1005765915288
  10. Defer GL, Adle-Biassette H, Ricolfi F, et al. All-trans retinoic acid in relapsing malignant gliomas; clinical and radiological stabilization associated with the appearance of intratumoral calcifications. J Neuro Oncol 1997;34:169-177 https://doi.org/10.1023/A:1005701507111
  11. Mayne ST, Lippman SM. Cancer prevention: retinoids, carotenoids, and micronutrients. In: DeVita VT jr, Hellman S, Rosenberg SA, eds. Cancer: principles and practice of oncology. 7th ed. Philadelphia, PA: Lippincott-Raven Publishers. 2005:521-536
  12. Manzano VM, Puyol MR, Puyol DR, et al. Tretinoin prevents age-related renal changes and stimulates antioxidant defenses in cultured renal mesangial cells. J Pharmacology & Experimental Therapeutics 1999;289:123-132
  13. Rutz HP, Little JB. Modification of radiosensitivity and recovery from X ray damage in vitro by retinoic acid. Int J Radiat Oncol Biol Phys 1989;16:1285-1288 https://doi.org/10.1016/0360-3016(89)90300-3
  14. Duchesne GM, Hutchinson LK. Reversible changes in radiation response induced by all-trans retinoic acid. Int J Radiat Oncol Biol Phys 1995;33:875-880 https://doi.org/10.1016/0360-3016(95)00174-X
  15. Hoffmann W, Blase MA, Santo-Hoeltje L, Herskind C, Bamberg M, Rodemann HP. Radiation sensitivity of human squamous cell carcinoma cells in vitro is modulated by all-trans and 13-cis-retinoic acid in combination with interferon- alpha. Int J Radiat Oncol Biol Phys 1999;45:991-998 https://doi.org/10.1016/S0360-3016(99)00298-9
  16. Traynelis VC, Ryken TC, Cornelius AS. Cytotoxicity of cis-parinaric acid in cultured malignant gliomas. Neurosurgery 1995;37:484-489 https://doi.org/10.1097/00006123-199509000-00017
  17. Vartak S, McCaw r, Dvis CS, Robbins ME, Spector AA. Gamma-linolenic acid (GLA) is cytotoxic to 36B10 malignant rat astrocytoma cells but not to 'normal' rat astrocytes. Br J Cancer 1998;77:1612-1620 https://doi.org/10.1038/bjc.1998.264
  18. Steel GG. Cell survival as a determinant of tumor response. In: Steel GG, ed. Basic Clinical Radiobiology. 3rd ed. London: Arnold. 2002:52-63
  19. Beers RF Jr, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 1952;195:133-140
  20. Wan Xs, Zhou Z, Kennedy AR. Adaptation of the dichlorofluorescein assay for detection of radiation-induced oxidative stress in cultured cells. Radiat Res 2003;160:622-630 https://doi.org/10.1667/3099
  21. Wan Xs, Zhou Z, Ware JH, Kennedy AR. Standardization of a fluorometric assay for measuring oxidative stress in irradiated cells. Radiat Res 2005;163:232-240 https://doi.org/10.1667/RR3299
  22. Zang C, Wachter M, Liu H, et al. Ligands for PPARgamma and RAR cause induction of growth inhibition and apoptosis in human glioblastomas. J Neurooncol 2003;65:107-118 https://doi.org/10.1023/B:NEON.0000003728.80052.a8
  23. Schmidt F, Groscurth P, Dichgans J, et al. Human malignant glioma cell lines are refractory to retinoic acid-mediated differentiation and sensitization to apoptosis. Cell Physiol Biochem 2000;10:159-168 https://doi.org/10.1159/000016346
  24. Bouterfa H, Picht T, Kess D, et al. Retinoids inhibit human glioma cell proliferation and migration in primary cell cultures but not in established cell lines. Neurosurgery 2000; 46:419-430 https://doi.org/10.1097/00006123-200002000-00029
  25. van den Bosch H, Schutgens RB, Wanders RJ, Tager JM. Biochemistry of peroxisomes. Annu Rev Biochem 1992; 61:157-197 https://doi.org/10.1146/annurev.bi.61.070192.001105
  26. Mannaerts GP, Van Veldhoven PP. Metabolic pathways in mammalian peroxisomes. Biochimie 1993;75:147-158 https://doi.org/10.1016/0300-9084(93)90072-Z
  27. Cimini A, Cristiano L, Bernardo A, Farioli-Vecchioli S, Stefanini S, Ceru MP. Presence and inducibility of peroxisomes in a human glioblastoma cell line. Biochim Biophys Acta 2000;1474:397-409 https://doi.org/10.1016/S0304-4165(00)00036-2
  28. Marklung SL, Westman NG, Lundgren E, Roos G. Copper- and zinc-containing superoxide dismutase, manganeseontaining superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res 1982;42:1955-1961
  29. Heck DE, Vetrano AM, Mariano TM, Laskin JD. UVB light stimulates production of reactive oxygen species: Unexpected role for catalase. J Biol Chem 2003;278:22432-22436 https://doi.org/10.1074/jbc.C300048200
  30. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine, 3rd ed. New York; Oxford University Press, 1999: 105-245
  31. Sanford KK, Parshad R, Price FM, et al. Retinoid protection against X-ray-induced chromatid damage in human peripheral blood lymphocytes. J Clin Invest 1992;90:2069-2074 https://doi.org/10.1172/JCI116089